
Computer Programming

Input/output functions

Marius Minea
marius@cs.upt.ro

9 November 2015

mailto:marius@cs.upt.ro

All inputs must be checked!
A program will not always receive the data it asks for

User may make mistakes, or may be evil
⇒ program must check that data was read correctly

MUST check return code of input function (NOT just value read)

Avoid overflow when reading strings and arrays
stop reading when array limit is reached

Buffer overflows corrupt memory (program data)
⇒ system is vulnerable to intruder attacks
Unvalidated input may cause code injection (attacker runs code)
⇒ some of the most dangerous and costly errors

A badly written program
An ignorant programmer are worse than no program(mer) at all!

Always checking for successful (correct) input!

Reading the desired data might not succeed for two reasons:
system: no more data (end-of-file), read error, etc.
user: data not in needed format (illegal char, not number, etc.)

A function can report both a result and an error code as follows:
1. expand result datatype to include error code

getchar() : unsigned char converted to int,
or EOF (-1) which is different from any unsigned char

2. return type may have a special invalid/error value
fgets returns address where the line was read (first argument)

or NULL (invalid pointer value) when nothing read

3. return error code and store result at given pointer
scanf returns no. of items read (can be 0, or EOF at end-of-input)

takes as arguments addresses where it should place read data

Process everything until no more (end of input/error)
Checking for end-of-input explicitly is rarely needed.
The point of processing is to read data
⇒ thus we must check that data was read successfully:

while (read successful) use data
On exit from loop, if feof(stdin), input is finished
else input does not match format ⇒ read next char(s) and report

DO NOT write code of the form
while (!feof(stdin))

scanf("%d", &n);
After last good read (number), end-of-input is not yet reached
unless no more separators (whitespace, incl. newline) after it
⇒ next read will not succeed, but is not checked

If read is checked (as it MUST be), testing EOF is not needed:
while (scanf("%d", &n) == 1)

// process n

Check bounds when filling an array

Often, we have to fill an array up to some stopping condition:
read from input upto a given character (period, \n, etc)
copy from another string or array

Arrays must not be written beyond their length!
Loop should first test array is not full!
for (int i = 0; i < len; ++i) { // limit to array size

tab[i] = ...; // assign with value read
if (normal stopping condition) break/return;

}
// here we can test if maximal length reached
// and report if needed

Text lines can be long. Check if truncated!
#include <stdio.h>
int rdline(char line[], size_t size) {

if (size-- == 0) return 0; // keep space for ’\0’
for (size_t i = 0; i < size; ++i) { // only up to size

int c;
if ((c = getchar()) == EOF) { line[i] = ’\0’; return i; }
if ((line[i] = c) == ’\n’) { line[++i] = ’\0’; return i; }

}
line[size] = ’\0’; return -1; // truncated line

} // why is reading directly into line[i] not good?
#define LEN 82
int main(void) {

char s[LEN]; int cnt;
if (cnt = rdline(s, LEN)) { // nonzero, something read

printf("%s", s); // print read line
if (cnt == -1) fputs("\nline truncated\n", stderr);
else if (s[cnt-1] != ’\n’) fputs("\nEOF, no \\n", stderr);

} else fputs("\nnothing read\n", stderr);
return 0;

}

Read text line easily: fgets

char tab[80];
if (fgets(tab, 80, stdin)) { /* line has been read */ }
else { /* EOF, nothing read */ }

Declaration: char *fgets(char *s, int size, FILE *stream);
(all I/O functions declared in stdio.h)

Reads up to and including newline \n, max. size-1 characters,
stores line in array s, adds ’\0’ at the end.

Third parameter to fgets indicates the file from which to read:
stdin (stdio.h) is standard input (keyboard unless redirected)

WARNING! NO reading without checking!
Check successful return code, anything else is too late!

fgets returns NULL if nothing read (end-of-file).
if successful returns address passed as argument (thus non-null)
⇒ Test non-null result to find out if read successful

Read line by line until end of input

char s[81];
while (fgets(s, 81, stdin)) printf("%s", s);

A line with > 80 chars will be read and printed piecewise (OK!)

More complex: can test if read line was truncated:
int c; char s[81];
if (fgets(s, 81, stdin)) // line was read

if (strlen(s) == 80 && s[79] != ’\n’ // unfinished
&& ((c = getchar()) != EOF) // EOF not reached

printf("incomplete line: %s\n", s);
ungetc(c, stdin); // put char c back

} else printf("complete line: %s\n", s);

C11 standard removed function //////gets: did not limit size read
⇒ it is impossible to use //////gets safely
⇒ buffer overflow, memory corruption, security vulnerabilities

Printing a string

puts("text; newline will be added");

Declaration: int puts(const char *s);
prints string s followed by newline \n

fputs("text with no newline added", stdout);
fputs(s, stdout); is like printf("%s", s);

prints string s as is, without additional newline
stdout is standard output (screen unless redirected)

Declaration: int fputs(const char *s, FILE *stream);

puts and fputs return EOF on error, nonnegative on success

Formatted output: printf

int printf(const char* format, ...);
functions with variable number of parameters: discussed later

First parameter: the format string; may contain:
usual characters (are printed)
format specifiers: % and a letter:

%c char, %d, %i decimal, %e, %f, %g real, %o octal, %p pointer,
%s string, %u unsigned, %x heXadecimal

Remaining parameters: expressions, their values are printed
their number and type must correspond to format specifiers

Result: number of characters printed (usually not used/ignored)

Example:
printf("square root of %d is %f\n", 3, sqrt(3));

Formatted input: scanf
int scanf(const char* format, ...);

First arg: string, with format specifiers (some differences to printf!)
Remaining parameters: addresses where to store read values

Need addresses, NOT necessarily & (one way to get addresses)
DON’T use & for strings: array name IS already its address

Returns number of objects read (assigned) (NOT their value!)
or EOF when error/end-of-file before anything read
WARNING! MUST CHECK scanf return value!
double x; float y; // CAUTION : %f float %lf double
if (scanf("%lf%f", &x, &y) != 2) { /* handle error */ }
else { /* can use x, y */ }

WARNING! MUST give max. string length in format!
char str[30];
if (scanf("%29s", str) != 1) { /* handle error */ }
else { /* word (up to first whitespace) has been read in s */ }

NEVER use %s: scanf("%s",...). Leads to buffer overflow.

Process repeatedly: while read successful
Simplest: exit program

primitive, but incomparably better than continuing with errors

void exit(int status) from stdlib.h ends program

Can write an error function that prints a message and calls exit()

#include <stdio.h>
#include <stdlib.h>
void fatal(char *msg)
{

fputs(msg, stderr); // to screen unless redirected
exit(EXIT_FAILURE); // or exit(1)

}

We can then use this function for every read:
if (scanf("%d", &n) != 1) fatal("error reading n\n");
// got here, use n

Good practice: Always print error messages to stderr
can separate errors from output (using redirection)

Handling input errors
Often, want to repeatedly read and process. A useful pattern:

while (read successful) process data

while (fgets(...)) { /*process line */}
while ((c = getchar()) != EOF) { /*process c */}
while (scanf(...) == how-many-to-read) { /* use them*/}
On loop exit, may test for EOF (normal read), or (format) error.

CAUTION! scanf does not consume non-matching input
⇒ must consume bad input before trying again
int m, n;
printf("Input two numbers: ");
while (scanf("%d%d", &m, &n) != 2) { // while not OK

for (int c; (c = getchar()) != ’\n’;) // skip to end of line
if (c == EOF) exit(1); // nothing more, done

printf("try again: ");
}
// can use m and n now

Reading a word (string)

Format letter s: for reading a word (string WITHOUT whitespace)
CANNOT read a sentence "This is a test."

Arrays are ALWAYS limited!
⇒MUST give max. length (a constant) between % and s
one less than array length, scanf will add \0

char word[33];
if (scanf("%32s", word) == 1)

printf("Word read: %s\n", word);

scanf with s format consumes and ignores initial whitespace:
\t \n \v \f \r and space, as checked by isspace()

CAUTION! Array names are addresses, DON’T use &

CAUTION! Format s reads a word (up to whitespace), not a line!

scanf: matching the format
Besides format specifiers (%), format string may have ordinary chars

printf: printed as such
scanf: must appear in input

Example: reading calendar date in dd.mm.yyyy format
unsigned d, m, y;
if (scanf("%u.%u.%u", &d, &m, &y) == 3)

printf("read 3 values: d=%u, m=%u, y=%u\n", d, m, y);
else printf("error reading date\n");

input 5.11.2013 (with periods!) ⇒ d=5, m=11, y=2013
see later how to enforce exactly 2 or 4 digits

scanf reads until input does not match format
Non-matching chars are not read; those variables are not assigned

scanf("%d%d", &x, &y);
input: 123A returns 1; x = 123, y: unchanged; input rest: A

scanf("%d%x", &x, &y);
input: 123A returns 2; x = 123, y = 0xA (10)

Reading strings with certain characters

allowed characters: between [] (ranges: with -)
Reading stops at first disallowed character

char a[33]; if (scanf("%32[A-Za-z_]", a) == 1) ...
max. 32 letters and _

char num[81]; if (scanf("%80[0-9]", num) == 1) ...
string of digits

WARNING! MUST give max. length between % and []

Reading a string except for disallowed (stopping) chars:
like above, but use ˆ after [to specify disallowed chars

char t[81]; if (scanf("%80[ˆ\n.]", t) == 1) ...
reads up to period or newline

WARNING! Format is [], NOT with s: %20[A-Z]s

Reading a fixed number of chars
One character:
int c = getchar(); if (c != EOF) { /*read OK */}
int c; if ((c = getchar()) != EOF) { /*read OK */}

With scanf (use char, not int; useful for arrays)
char c; if (scanf("%c", &c) == 1) { /* read OK */}

Reading a fixed number of chars:
char tab[80]; scanf("%80c", tab);
reads EXACTLY 80 chars, anything (including whitespace)
DOES NOT add ’\0’ at end ⇒ can’t know if all read

Check how many read by initializing with zeroes and testing length:
(or with %n format, see later)
char tab[81] = "";
scanf("%80c", tab);
int len = strlen(tab); // will be between 0 and 80

Whitespace handling in scanf

Numeric formats and s consume and ignore initial whitespace
"%d%d" two ints separated and possibly preceded by whitespace

In formats c [] [ˆ] whitespace are normal chars (not ignored)

A white space in the format consumes any ≥ 0 whitespace in input
scanf(" "); consumes whitespace until first non-space char

"%c %c" reads char, consumes ≥ 0 whitespace, reads other char
"%d %f" is like "%d%f" (whitespace allowed anyway)

CAUTION! "%d " : space after number consumes ALL whitespace
(including newlines!)

Consume whitespace, but not newline \n:
scanf("%*[\t\v\f\r]");

blue* modifier means consume and ignore (no address is given)

Consume and ignore with scanf

To consume and ignore (skip) data with a given format:
Use * after %, without specifying address where to read
⇒ scanf reads according to pattern, but does not store data
and does not count in result (number of read objects)
Example: text with three grades and average, need just average:
int avg;
if (scanf("%*d%*d%*d%d", &avg) == 1) { /* use */ }
else { /* wrong format, handle error */ }

Example: consume rest of line
scanf("%*[ˆ\n]"); // consume up to \n, without \n
if (getchar() == EOF) { /* end of input */ }
// otherwise, getchar() has consumed \n, continue

Specifying limits in scanf

Number between % and format character limits count of chars read
%4d int, at most 4 chars (initial spaces don’t count, sign does!)

scanf("%d%d", &m, &n); 12 34 m=12 n=34
scanf("%2d%2d", &m, &n); 12345 m=12 n=34 rest: 5
scanf("%d.%d", &m, &n); 12.34 m=12 n=34
scanf("%f", &x); 12.34 x=12.34
scanf("%d%x", &m, &n); 123a m=123 n=0xA

Format specifiers in scanf

%d: signed decimal int
%i: signed decimal, octal (0) or hexadecimal (0x, 0X) int
%o: octal (base 8) int, optionally preceded by 0
%u: unsigned decimal int (warning: accepts negative and converts)
%x, %X: hexadecimal int, optionally with 0x, 0X
%c: any char, including whitespace
%MAXs: string of chars, until first whitespace. ’\0’ is added
MUST have a constant MAX unless assignment suppressed with *
%a, %A, %e, %E, %f, %F, %g, %G: real (possibly with exponent)
%p: pointer, as printed by printf
%n: writes into argument (int *) count of chars read so far
does not read; does not add to count of read objects (return value)
%[· · ·]: string of indicated allowed characters
%[ˆ· · ·]: string except indicated disallowed chars
%%: percent character

Format specifiers in printf

%d, %i: signed decimal int
%o: signed octal int, without initial 0
%u: unsigned decimal int
%x, %X: hexazecimal int, without 0x/0X; lower/upper case
%c: character
%s: string of characters, up to ’\0’ or indicated precision
%f, %F: real w/o exponent; 6 decimal digits; no dot if 0 precision
%e, %E: real with exponent; 6 decimal digits; no dot if 0 precision
%g, %G: real, like %e, %E if exp. < -4 or ≥ precision; else like %f.
Does not print zeroes or decimal point if useless
%a, %A: hexadecimal real with decimal 2’s exponent 0xh.hhhhp±d
%p: pointer, usually în hexadecimal
%n: writes into argument (int *) count of chars written so far
%%: percent character

Formatting: modifiers

Format specifiers may have other optional elements:
% flag size . precision modifier type

Flags: *: field is read but not assigned (is ignored) (scanf)
-: aligns value left for given size (printf)
+: + before positive number of signed type (printf)
space: space before positive number of signed type (printf)
0: left-filled with 0 up to indicated size (printf)

Modifiers:
hh: argument is char (for d i o u x X n format) (1 byte)
char c; scanf("%hhd", &c); in: 123 → c = 123 (1 byte)
h: argument is short (for d i o u x X n format), e.g. %hd
l: arg. long (format d i o u x X n) or double (fmt. a A e E f F g G)
long n; scanf("%ld", &n); double x; scanf("%lf", &x);

ll: argument is long long (for d i o u x X n format)
L: argument is long double (for a A e E f F g G format)

Formatting: size and precision

Size: an integer
scanf: maximal character count read for this argument
printf: minimal character count for printing this argument
right aligned and filled with spaces, or according to modifiers

Precision: only in printf; dot . optionally followed by an integer
(if only dot, precision is zero)
minimal number of digits for diouxX (filled with 0)
number of decimal digits (for Eef) / significant digits (for Gg)
printf("|%7.2f|", 15.234); | 15.23| 2 decimals, 7 total
maximal number of chars to print from a string (for s)
char m[3]="Jan"; printf("%.3s", m); (for string w/o ’\0’)

In printf, can have * instead of size and/or precision
Then, size/precision is given by next argument:
printf("%.*s", max, s); prints at most max chars

Sample formatted output

Floating point numbers in various formats:
printf("%f\n", 1.0/1100); // 0.000909 : 6 decimal digits
printf("%g\n", 1.0/1100); // 0.000909091 : 6 significant dig.
printf("%g\n", 1.0/11000); // 9.09091e-05 : 6 significant dig.
printf("%e\n", 1.0); // 1.000000e+00 : 6 decimal digits
printf("%f\n", 1.0); // 1.000000 : 6 decimal digits
printf("%g\n", 1.0); // 1 : no period and useless zeroes
printf("%.2f\n", 1.009); // 1.01: 2 decimal digits
printf("%.2g\n", 1.009); // 1: 2 significant digits

Writing integers in table form:
printf("|%6d|", -12); | -12| printf("|% d|", 12); | 12|
printf("|%-6d|", -12); |-12 | printf("|%06d|", -12); |-00012|
printf("|%+6d|", 12); | +12|

Write 20 characters (printf returns count of written chars)
int m, n, len = printf("%d", m); printf("%*d", 20-len, n);

Examples of formatted input
Two characters separated by a single space (consumed by %*1[])
char c1, c2; if (scanf("%c%*1[]%c", &c1, &c2) == 2) ...
Read an int with exactly 4 digits: unsigned n1, n2, x;
if (scanf("%n%4u%n", &n1, &x, &n2)==1 && n2 - n1 == 4)...
"%n" counts read chars; store counters in n1, n2, then subtract
Reads/checks for a word that must appear: int nr=0;
scanf("http://%n", &nr); if (nr == 7) { /*appears */}
else { /* does not reach %n, nr stays 0 */}
Ignores up to (and excluding) a given char (\n):
scanf("%*[ˆ\n]");
Test for the right number of read objects, not just nonzero!
if (scanf("%d", &n) == 1), not just if (scanf("%d", &n))
scanf may also return EOF, which is nonzero!
For integers, test overflow using extern int errno;

#include <errno.h> // declares errno and error codes
if (scanf("%d", &x) == 1)) // test reset errno on overflow

if (errno == ERANGE) { printf("number too big"); errno = 0; }

ERRORS with reading from input

NO! while (scanf("%...", ...)) DON’T test for nonzero result.
It could be > 0 (items read), or -1 (EOF), nothing read!
YES: while (scanf("%...", ...) == how-many-items-wanted)

NO! scanf("%20[a-z]s", buf). The format is [], not []s
YES: if (scanf("%20[a-z]", buf) == 1) ...

NO! scanf("%20s,%d", name, &grade). The s format reads
everything non-whitespace, so it won’t stop at comma
YES: if (scanf("%20[ˆ,],%d", name, &grade) == 2)
to read a string with no comma (all else allowed, including
whitespace), the comma, and a number

