
Computer Programming

Pointers

Marius Minea
marius@cs.upt.ro

17 November 2015

mailto:marius@cs.upt.ro

Pointers are addresses
Any lvalue (variable x, array element, structure field) of type T
has an address &x of type T * where its value is stored.

An array name is its address
A string is represented by its address, it is a char *

An address is a numeric value, but is not an int or unsigned .
It may be printed with format specifier "%p" in printf

Valid addresses are non-null. NULL indicates an invalid address
NULL is (void *)0 0 cast to type void *

We need to know how to
1. declare a variabile of pointer (address) type
2. obtain a pointer (address) value
3. use a pointer (address) value
To use pointers correctly, need to (like for all variables/values):
1. be aware of their type
2. initialize them correctly
3. use the right operators / functions

Declaring, initializing and assigning pointers
Declaring pointers: type *ptrvar;

⇒ the variable ptrvar may contain the address of a value of type

Examples: char *s; int *p;

When declaring several pointers, need * for each of them:
int *p, *q; two integer pointers
int *p, q; one pointer p and one integer q

Obtaining pointers
An array name is a pointer: int tab[10], *a = tab;
same as: int tab[10]; int *a; a = tab;

Declaring T tab[10]; array name tab has type T *

The address operator & yields a pointer: int n, *p = &n;
or: int n; int *p; p = &n;

A string constant has type pointer: char *s = "test";
same as: char *s; s = "test";

Dereferencing a pointer
The dereferencing (indirection) operator * prefix operator

operand: pointer; result: object (variable) indicated by pointer

*p is an lvalue (can be assigned, like a variable)
can also be used in an expression, like any value of that type

Declaration syntax suggests types!
T *p; says T * is type of p T is type of *p

The operator * is the inverse of &

*&x is the object at address &x, that is, x

&*p is the address of the value at address p, that is, p

int x, y, *p = &x; y = *p; /* y = x */ *p = y; //x = y

& and * have opposite effect on types
x has type T ⇒ &x has type T *

p has type T * ⇒ *p has type T

We can have pointers at any level

Any variable has an address ⇒ a pointer variable too
Any expression has a type ⇒ the address of a pointer too
The address of a variable of type T has type T *

Declaring int *p; we can take &p, its type is int **
⇒ we can declare int **p2 and initialize/assign it with &p

declaration T * p; may be read:
T * p; p has type T *

T *p; *p has type T
char **s; address of char addr
char *t[8]; array of 8 char addr

Variable Value Address
int x = 5; 5 0x408

...
int *p=&x; 0x408 0x51C

...
int **p2=&p; 0x51C 0x9D0

Initialization and assignment are different!

WARNING: A declaration with initializer is NOT an assignment !

The * in declarations is NOT an indirection operator!
* is written next to the declared variable, but belongs to the type!

When declaring int *p; this suggests that *p is an int
but the variable declared is p, NOT *p (*p is not an identifier)
even though the * is repeated for each var: int *p, *q;

The variable initialized is p, NOT *p (which is NOT a variable)
⇒ must initialize it with a value of the right type
int t[2] = { 3, 5 }; initializes t. WRONG: t[2] = { 3, 5 };

int x, *p = &x; is like int x; int *p; p = &x;
(p is initialized/assigned, NOT *p). *p = &x is a type error!
char *p = "str"; is char *p; p = "str"; WRONG: *p = "str";

Pointers hold only addresses, not data!
Programs process data (ints, reals, chars). Need to store this data.

Must declare variables/arrays of these types to store this data
Not enough to have just pointers (but: see dynamic allocation)

Understand what your program means!

Declaring int x; means
I want to have an integer. I have no value for it yet.

⇒ Better: int min = a[0];

Declaring char *p; means
I want to work with a character (or character array)

I HAVE NOT DECLARED A CHAR. I CAN’T STORE ANY CHAR.
The pointer is uninitialized, I don’t know where it points to.

Need:
char *p = buf; p points to array char buf[10]; declared before
char *p = "ana are mere"; p points to a string constant
char *p = strchr(buf, ’<’); returned by function, could be NULL

ERROR: no initialization

It’s an ERROR to use any uninitialized variable
int sum; for (i=0; i++ < 10;) sum += a[i]; // initially??
⇒ program behavior is undefined (best case: random initial value)

Pointers must be initialized before use, like any variables
with the address of a variable (or another initialized pointer)
with a dynamically allocated address (later)

ERROR: int *p; *p = 0; ERROR: char *p; scanf("%20s", p);
p is uninitialized (best case NULL, if global variable)

⇒ value will be written to unknown memory address
⇒ memory corruption, security vulnerability;
program crash is luckiest case!

WARNING: a pointer is not an int. WRONG: int *p = 640; !
Address space is determined by system, not user
⇒ CANNOT choose an arbitrary address we want

Using pointer parameters: assignment in functions
A function CANNOT change a variable passed as parameter

because the value is passed, not the variable itself
void nochange(int x) { ++x; printf("%d\n", x); }
void try(void) {

int a = 5; nochange(a); // will print 6
printf("%d\n", a); // still prints 5 !

}

But, with a variable’s address p, we may use its value: ...= *p;
assign it: *p =...;

Having a variable’s address, a function may write to it (e.g. scanf).
void swap (int *pa, int *pb) { // swaps values at 2 addresses

int tmp; // keeps first changed value
tmp = *pa; *pa = *pb; *pb = tmp; // integer assignments

}
...
int x = 3, y = 5; swap(&x, &y); // now x = 5, y = 3}

Pointers as function parameters

We use addresses as function parameters:
to pass arrays (can’t pass array contents in C)
to return several values (return allows only one)
e.g. min and max of an array; result and error code

Arrays as function parameters
When passing an array to a function, the address is passed

The name of the array represents its address

in T tab[LEN]; the array name tab has type T *

restype f(eltype a[]) is same as restype f(eltype *a)

Conversions from strings
Variants of printf/scanf with strings as source/destination
int sprintf(char *s, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

sprintf has no limitation ⇒ may overflow buffer. Use instead:
int snprintf(char *str, size_t size, const char *format, ...);
writing is limited to size chars including \0 ⇒ safe option

Converting strings to numbers
int n; char s[] = " -102 56 42";
if (sscanf(s, "%d", &n) == 1) ... //number OK

(but we don’t know where processing of string stopped)
long int strtol(const char *nptr, char **endptr, int base);

assigns to *endptr the address of first unprocessed char
char *end; long n = strtol(s, &end, 10); base 10 or other
also strtoul for unsigned long, strtod for base 10 double
int n = atoi(s); returns 0 on error, but also for "0"

use only when string known to be good

Command line arguments
command line: program name with arguments (options, files, etc.)
gcc -Wall -o prog prog.c ls directory cp file1 file2

main can access command line if declared with 2 args (only these):
int argc number of words in command line (arguments + 1)
char *argv[] array of argument addresses (strings)
#include <stdio.h>
int main(int argc, char *argv[]) { // or char **argv (same)

printf("Program name: %s\n", argv[0]);
if (argc == 1) puts("Program called with no arguments");
else for (int i = 1; i < argc; i++)

printf("Argument %d: %s\n", i, argv[i]);
return 0;

}
argv[0] (first word) is program name, thus argc >= 1
argv[] array ends with a NULL element, argv[argc]

Run a command from program: int system(const char *cmdline)
returns -1 if can’t run, or exit code of program

