Computer Programming

Decision. Recursion. Characters

Marius Minea
marius@cs.upt.ro

3 October 2016

Review: ways to write a function
Computes a value

```
double discrim(double a, double b, double c)
{
    return b*b - 4*a*c;
}
Produces an effect (e.g. prints a message)
void myerr(int code) // void type: returns nothing
{
    printf("error code %d\n", code);
}
effect + value (computes + writes: several statements)
int sqr(int x)
{
    printf("Computing the square of %d\n", x);
    return x * x;
}
```


Review: structure of a simple program

```
#include <stdio.h> // if we need to read/write
#include <math.h> // if we use math functions
// function definition: third side of a triangle
double thirdside(unsigned a, unsigned b, double phi)
{
    // the expression contains 2 function calls: cos, sqrt
    return sqrt(a*a + b*b - 2*a*b*cos(phi));
} // will be called in main --> define before
int main(void)
{
    // function call with values for its arguments
    printf("third side: %f\n", thirdside(3, 5, atan(1)));
    return 0;
}
```


Program structure: separating concerns

passing an argument is NOT reading from input computing a value is NOT writing it

A function will typically NOT ask for input.
The smallest functions will receive arguments and return results This allows them to be composed and used anywhere.

A function will typically NOT print its result, just return it. (printing is inflexible: may want different format, language, etc.)

We might write wrapper functions that ask for input, then call the computation function.
We might also write display functions that get a value and print it.

Functions with and without result

We solve a (computational) problem by writing a function.
function parameters: the input data, used to compute result NOT read from input, but given in function call: $f(3,7)$

Functions with result produced with the statement return expression ; must appear at end of any path (if branch) through function else the function won't return a result!
warning: control reaches end of non-void function
CAUTION! in statement $f(5)$; returned value is not used use it: return $f(5)$; , as parameter printf("\% d", $f(5))$, etc.

Functions that don't return a value (e.g., just print) declare function with return type void
void print_int(int n) \{ printf("integer \%d\n", n); \} returns on reaching closing brace OR return; (NO expression) use: standalone in an expression statement: print_int(7);

Recursion: power by repeated squaring

Recursion $=$ reduction to a simpler case of the same problem
Base case is simple enough for direct computation (can / need no longer be reduced)

$$
x^{n}= \begin{cases}1 & n=0 \\ x & n=1 \\ \left(x^{2}\right)^{n / 2} & n>1 \text { even } \\ x \cdot\left(x^{2}\right)^{n / 2} & n>1 \text { odd }\end{cases}
$$

double pow2(double x, unsigned n)
\{

```
return n < 2 ? n == 0 ? 1 : x
    : n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);
```

\}

Let's follow the recursive calls

```
#include <stdio.h>
double pow2(double x, unsigned n)
{
    printf("base %f exponent %u\n", x, n);
    return n < 2 ? n == 0 ? 1 : x
        : n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);
}
int main(void)
{
    printf("5 to the 6th = %f\n", pow2(5, 6));
    return 0;
}
```

Each call halves the exponent $\Rightarrow\left\lceil\log _{2}(n+1)\right\rceil$ calls $\operatorname{pow} 2(5,6) \rightarrow \operatorname{pow} 2(25,3) \rightarrow \operatorname{pow} 2(625,1)$

How to use recursion

Recursion solves a problem by reducing it to a simpler case of the same problem.

To use recursion, we must express the problem as a function things given/known to the function are parameters (index of recursive sequence; problem size; etc.) the answer to the problem is the function result

Sometimes, the problem asks to produce an effect (print) rather than compute a result.

Block statements and sequencing

A function body may have several statements in sequence

```
{
    printf("This is a line\n");
    printf("Line 2: ");
    printf("cos(0)=%f\n", cos(0));
    return 0;
}
```

Function returns on reaching closing brace OR return statement.
More generally, a block (compound statement) can appear in place of any statement.

This is an example of recursion in the definition of statements: statement $::=$ return expression optional ; expression $_{\text {optional }}$; (incl. function call) \{ statement ... statement \}

The if statement

Conditional operator ? : selects from two expressions to evaluate Conditional statement selects between two statements to execute Syntax:
if (expression) or if (expression) statement1
statement1
else
statement2
Effect:
If the expression is true (nonzero) statement1 is executed, else statement2 is executed (or nothing, if the latter is missing)

Each branch has only one statement. If several statements are needed, these must be grouped in a compound statement \{ \}

The parantheses () around the condition are mandatory.

Example with the if statement

Printing roots of a quadratic equation:

```
void printsol(double a, double b, double c)
{
    double delta = b * b - 4 *a * c;
    if (delta >= 0) {
        printf("root 1: %f\n", (-b-sqrt(delta))/2/a);
        printf("root 2: %f\n", (-b+sqrt(delta))/2/a);
    } else printf("no solution\n"); // puts("no solution");
}
Can rewrite the conditional operator ? : using the if statement
```

```
int abs(int x)
```

int abs(int x)
{
{
return x > 0 ? x : -x;
return x > 0 ? x : -x;
}

```
}
```

```
int abs(int x)
```

int abs(int x)
{
{
if (x > 0) return x;
if (x > 0) return x;
else return -x;
else return -x;
}

```
}
```


Recursion: Fibonacci words

Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n>1$ inefficient to do direct recursion (exercise: how many calls?)

Can define Fibonacci words (strings):
$S_{0}=0, S_{1}=01, S_{n}=S_{n-1} S_{n-2}$
(formed by string concatenation)
Write a function that prints S_{n}
problem $=$ function; effect $=$ print; concatenation $=$ sequencing

More recursion: fractals

Fractals are self-similar figures
(a part of the figure looks like the whole figure $=$ recursion!)
Box fractal:

More recursion: fractals

Fractals are self-similar figures
(a part of the figure looks like the whole figure $=$ recursion!)
Box fractal:

What is the base case?
What defines a part of the figure?

Elements of a recursive definition

1. Base case: no recursive call
$=$ simplest case, defined directly
e.g. in sequences: initial term x_{0} of the recurrence the empty list (for a list of elements)

A missing base case is an $E R R O R \Rightarrow$ recursion never stops!
2. the recurrence relation
defines a notion using a simpler case of the same notion
3. Proof/argument that recursion stops in a finite number of steps
(e.g. a nonnegative measure that decreases on each application for sequences: the index (smaller in definition body but ≥ 0) for recursive objects: size (component objects are smaller)

Are the following definition recursive and correct ?

$? x_{n+1}=2 \cdot x_{n}$
$? x_{n}=x_{n+1}-3$
? $a^{n}=a \cdot a \cdot \ldots \cdot a$ (n times)
? a sentence is a sequence of words
? a sequence is the concatenation of two smaller sequences
? a string is a character followed by a string
A recursive definition must be well formed (conditions 1-3) something cannot be defined only in terms of itself one can only use other notions which are already defined computation has to stop at some point

Recursion in numbers: sequences of digits

A natural number (in base 10) can be defined/viewed recursively: a number is a single digit or: last digit preceded by another number (in base 10)
We can find the two parts using integer division (with remainder)

$$
n=10 \cdot(n / 10)+n \% 10
$$

$$
1457=10 \cdot 145+7
$$

the last digit of n is $n \% 10$
$1457 \% 10=7$
the number remaining in front is $n / 10 \quad 1457 / 10=145$
Problems with a simple recursive solution:
sum of a number's digits number of digits; largest/smallest digit, etc.
Solution: always follow the structure of the recursive definition base case: directly give result for single-digit number recurrence: combine last digit with result for remaining number (n/10)

How many digits in a number?

1 , if number <10 else, one digit more than the number without its last digit ($n / 10$)

```
unsigned ndigits(unsigned n)
{
    return n < 10 ? 1 : 1 + ndigits(n / 10);
}
```

Alternative: use an accumulator for the digits already counted start from 1 (last digit already counted; surely has one) if the number is single-digit, return the digits already counted else, $n / 10$ still has (at least) one digit, add 1 to parameter

```
unsigned ndigs2(unsigned n, unsigned r)
```

\{
return n < 10 ? r : ndigs2(n / 10, r + 1);
\}

Need function with only one parameter: wrap auxiliary function (called with starting value 1 : single-digit number)
unsigned ndig(unsigned n) \{ return ndigs2(n, 1); \}

Largest digit in a number

base case: single-digit number (digit is also max) else, max of last digit and result for the remaining number

```
unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdigit(unsigned n)
{
    return n < 10 ? n : max(n%10, maxdigit(n/10));
}
Variant with accumulator: maximal digit seen so far: md
if 0 (no more digits), return the maximum so far: md else, continue with maximum of last digit and previous max
unsigned maxdig2(unsigned n, unsigned md)
{
    return n == 0 ? md : maxdig2(n/10, max(md, n%10));
}
unsigned maxdig(unsigned n) { return maxdig2(n/10, n%10); }
```


Two ways of writing recursion

unsigned max(unsigned a, unsigned b) \{ return a > b ? a : b; \} unsigned maxdig(unsigned n) \{ return $\mathrm{n}<10$? $\mathrm{n}: \max (\mathrm{n} \% 10$, maxdig($\mathrm{n} / 10)$);
\} // directly from: number : := digit | number digit
unsigned maxdig2(unsigned n, unsigned maxd) \{ unsigned md1 $=\max (n \% 10, \operatorname{maxd})$;
return $\mathrm{n}<10$? md1 : maxdig2(n/10, md1);
\} // keep maxd found so far
unsigned maxdig1 (unsigned n) \{ return $\mathrm{n}<10$? n : maxdig2($\mathrm{n} / 10$, $\mathrm{n} \% 10$);
\} // 1-arg wrapper for function above

Is recursion efficient?


```
#include <stdio.h>
#include <math.h>
double s(unsigned n) {
    return n == 0 ? 1 : s(n-1) + cos(n);
}
int main(void) {
    printf("%f\n", s(1000000));
    return 0;
}
./a.out
Segmentation fault
```


Recursion and the stack

Code executes sequentially (except for branch/call/return)
When calling a function, must remember where to return (right after call)
Must remember function parameters and locals to keep using them
These are placed on the stack since nested calls return in opposite order made must restore values in reverse order of saving (last in, first out)

If recursion is very deep, stack may be insufficient \Rightarrow program crash even otherwise, save/call/restore may be expensive

Tail recursion

$S_{0}=1, \quad S_{n}=S_{n-1}+\cos n$
We know we'll have to add $\cos n$ (but not yet to what)
\Rightarrow can anticipate and accumulate values we need to add
When reaching the base case, add accumulator (partial result)

```
double s2(double acc, unsigned n)
```

\{ return $\mathrm{n}=0$? acc : $\mathrm{s} 2(\mathrm{acc}+\cos (\mathrm{n}), \mathrm{n}-1)$; \}
double s1(unsigned n) \{ return s2(1, n); \} // call w/ S0=1
Program now works!

Tail recursion is iteration!

A function is tail-recursive if recursive call is last in the function. no computation done after call (e.g., with result) result (if any) is returned unchanged between calls
\Rightarrow parameter and local values no longer needed
\Rightarrow no need for stack: replace recursive call with jump,
return value at end (base case)
(Optimizing) compiler converts tail recursion to iteration (loop) need not worry about efficiency

Recursion can express arbitrary repetition

Base case: are we done? return (result)
Recursive case (not done):
compute new partial result call recursive function with new partial result (usually an extra parameter, besides initial input)

Exercise: rewrite Fibonacci
extra parameters: last, previous number stopping condition: all iterations done

Characters. ASCII code

ASCII = American Standard Code for Information Interchange Characters are represented as a numeric code $=$ index in this table e.g. '0' $==48$, ' A ' $==65$, 'a' $==97$, etc.

$0 x 0 \quad$ \0 \quad a $\backslash \mathrm{b} \backslash t \backslash n \backslash v \backslash f$ \r
0×10 :

Prefix 0x denotes hexazecimal constants (in base 16)
Characters < 0x20 (space): control characters digits; uppercase letters; lowercase letters: 3 contiguous sequences ASCII: only up to $0 x 7 f$ (127); then national chars, multi-byte, etc.

The character type

The standard type char is used to represent characters char is an integer type, with smaller range than int or unsigned \Rightarrow can be stored in a byte (CHAR_BIT ≥ 8 bits)
char can be signed char, at least -128 to 127 , or unsigned char, at least 0 to 255 . Both are included in int.
character constants are written betweeen (single) quotes ' , They are integer values. In expressions: implicitly converted to int Digits, lowercase letters and uppercase letters are consecutive \Rightarrow

'7' == '0' + 7 '5' - '0' == 5 ' $\mathrm{E}^{\prime}-\mathrm{A}^{\prime} \mathrm{A}=4$ 'f' == 'a' + 5

Escape sequences (textual representation) for special chars:

' $\backslash 0$ '	null	' $\backslash \mathrm{n}$ '	newline
' $\backslash \mathrm{a}$,	alarm	' \backslash r ${ }^{\prime}$	carriage return
' $\backslash \mathrm{b}$,	backspace	' $\$ f ${ }^{\text {, }}$	form feed
' $\backslash \mathrm{t}$,	tab	'\',	single quote
' $\ \mathrm{v}$,	vertical tab	'\1'	backslash

Writing a character: putchar

Declaration, in stdio.h: int putchar(int c); Call (sample use): putchar('7')
Writes an unsigned char (given as int); returns its value, or EOF (constant-1) on error

```
#include <stdio.h>
int main(void)
{
    putchar('A'); putchar(':'); // writes A then :
    putchar(getchar()); // prints character read
    return 0;
}
```

Chars are just ints (stored in one byte).
' A ' is just another way of writing 65 .

Review: conditional expression

condition ? expr1 : expr2 everything is an expression expr1 or expr2 may be conditional expression themselves (if we need more questions to find out the answer)

$$
f(x)=\left\{\begin{array}{rl}
-6 & x<-3 \\
2 \cdot x & x \in[-3,3] \\
6 & x>3
\end{array}\right.
$$

double f(double x)
\{

$$
\begin{gathered}
\text { return } \mathrm{x}<-3 ?-6 \quad / / \text { else, we know } \mathrm{x}>=-3 \\
: \mathrm{x}<=3 ? 2 * \mathrm{x}: 6 \text {; }
\end{gathered}
$$

\}

$$
\text { or: } \quad x>=-3 \text { ? }(x<=3 \text { ? } 2 * x \text { : 6) : }-6
$$

if $x \geq-3$ we still need to ask $x \leq 3$?
or: $\quad x<-3$? -6 : ($x>3$? $6: 2 * x$)
if x is not <-3 or >3, it must be $x \in[-3,3]$

Conditional expression (cont'd)

The conditional expression is an expression
\Rightarrow may be used anywhere an expression is needed
Example: as an expression of type string in puts
(function that prints a string to stdout, followed by a newline)

```
void printsgn(int n)
```

\{
puts(n == 0 ? "zero"
: n > 0 ? "positive"
: "negative");
\}
Note layout for readability: one question per line.

Expressions and statements

Expression: computes a result arithmetic operations: $\mathrm{x}+1$ function call: fact(5)

Statement: executes an action

```
return n + 1;
```

Any expression followed by ; becomes a statement
n + 3; (computes, but does not use the result) printf("hello!"); we do not use the result of printf
but are interested in the side effect, printing
printf returns an int: number of chars written (rarely used)
Statements contain expressions. Expressions don't contain statements.

Sequencing for statements and expressions

Statements are written and executed in order (sequentially)
With decision, recursion and sequencing we can write any program
Compound statement: several statements between braces \{ \}
A function body is a compound statement (block).

\{		\{
	statement	
	\ldots	
\}	statement	
		\}

A compound statement is considered a single statement. May contain declarations: anywhere (C99/C11)/at start (C89).
All other statements are terminated by a semicolon ;
The sequencing operator is the comma: expr1, expr2
Evaluate expr1, ignore, the value of the expression is that of expr2

Decisions with multiple branches

The branches of an if can be any statements
\Rightarrow also if statements
\Rightarrow can chain decisions one after another

```
void binop(int op, int a, int b) // op: operator (char)
```

\{
if (op == '+') printf("sum: \%d\n", a + b);
else if (op == '-') printf("diff: \%d\n", a - b);
else puts("bad operator");
\}

Checks op=='+' and op=='-' are not independent. DON'T write if (op =- ' +)) printf ("sum: \%d\n", a + b);
if (op - - , ') printf ("diff: \%d\n", $a-b$);
It is pointless do the second test if the first was true (op cannot be both + and - at the same time)
The proper code is with chained ifs (or a switch statement)

Decisions with multiple branches

If each branch ends with returning a value, the else is not needed: we only get to a branch if the previous condition was false (else the function will have returned):

```
int binop(int op, int a, int b) // op: operator (char)
{
    if (op == '+') return a + b;
    if (op == '-') return a - b; // can't be here for op == '+'
    puts("bad operator"); return 0; // any other case
}
```

Often, we first deal with error cases, then do the actual processing:

```
int check_interval(int n) {
```

 if (n > 100) \{ puts("number too big"); return -1; \}
 if (\(\mathrm{n}<0\)) \{ puts("number is negative"); return -1; \}
 // do something with n here
 return 0; // means OK
 \}

Example with if: printing a number

```
#include <stdio.h>
void printnat(unsigned n) { // recursive, digit by digit
    if (n >= 10) // if it has several digits
        printnat(n/10); // write first part
    putchar('O' + n % 10); // always write last digit
}
int main(void)
{
    printnat(312);
    return 0;
}
```

