
Computer Programming

File I/O. Preprocessor Macros

Marius Minea
marius@cs.upt.ro

4 December 2017

mailto:marius@cs.upt.ro

Files and streams

A file is a data resource on persistent storage (e.g. disk).
File contents are typically sequences of bytes.

A stream is a program’s view (logical view) of a file, also as
sequence of characters (bytes). character = byte

a communication “channel” between program and outside world

So far, we’ve used standard input, output, and error streams.

Input and output so far

programstdin stdout

stderr

fgets(...,stdin),
getchar,scanf,...

printf, puts,
putchar,...

fprintf(stderr,...)

fputs(...,stderr)

stdin default: from keyboard
stdout default: to screen all three have type FILE *
stderr default: to screen

different logical purpose (results vs. errors)

These streams are automatically open when program runs

Input/output redirection

programstdin stdoutin.txt out.txt

./program < in.txt ./program > out.txt

Can redirect standard streams to files from command line:
⇒ without change, programs doing “usual” I/O work with files!

input: program < in.txt will read from in.txt
output: program > out.txt will write to out.txt
both: program < in.txt > out.txt
stderr: program 2> err.txt (2 is stderr descriptor)

Remember: can run command from C with system (stdlib.h)

Working with files from C

programFILE *fi FILE *foin.txt out.txt

fread, fscanf,
fgetc, fgets,...

fwrite, fprintf,
fputc, fputs,...

fi=fopen("in.txt", "r") fo=fopen("out.txt", "w")

To work with files, a program must
1. associate a stream with a file, by opening the file.

C uses the type FILE * to represent streams
2. work with the stream (FILE *) just like with stdin / stdout

using the same or similar functions from stdio.h

3. close the file

That’s all we need to work with files!

Simple: show contents of text file

File name is 1st commandline argument (check that argc is 2)

#include <stdio.h>

int main(int argc, char *argv[]) {
FILE *f;
char buf[80];
if (argc == 2 && (f = fopen(argv[1], "r"))) {

while (fgets(buf, sizeof(buf), f)) fputs(buf, stdout);
fclose(f);

} // else report error
}

Text and binary streams
Text files are files with human-readable content:
.txt files, programs .c, .c++, web pages .html, .xml files, etc.

Text streams contain characters grouped in lines terminated by \n

Conversions may occur in reading/writing text streams.
e.g. end of line is \r\n in Windows vs. \n in Unix

C standard guarantees one-to-one correspondence if:
text contains only printable chars, tab and newline
no newline is immediately preceded by spaces
last character is a newline

Binary files are not human-readable as character sequences:
.exe, .mp3, though they may contain text: .doc, .pdf

Binary streams record data as-is .
The sequence of characters read is exactly the same as was written

⇒ Any file (including text) may be opened as binary stream

File opening modes

r: open for reading (file must exist)
w: open for writing (truncated to length 0 if existing, else created)
a: open for appending (writing at end of file; created if inexistent)

any writes go to current end-of-file, regardless of using fseek

First character (r, w, a) of opening mode may be followed by:
+ (r+, w+, a+): open as stated, but can use for input and output

to write after a read, must set position (fseek), unless EOF
to read after a write, must set position (fseek) or fflush
a+: initial read position implementation-defined (glibc: at start)

b: opens binary file (otherwise: text; no explicit text mode)

x: (eXclusive) may be last char only in w mode
file must not exist; no shared access allowed (if system support)

Examples: rb+ (read/write, binary), wx, wb+x, a+x, etc.

Opening and closing files
FILE *fopen (const char *pathname, const char *mode)
arg. 1: file name (absolute or relative to current directory)
arg. 2: string with open mode: r, w, or a; optionally +, b, x

FILE *f1 = fopen("/home/u/t.txt", "r"); // fixed name, avoid
FILE *f2 = fopen(argv[2], "w"); // 2nd arg, check argc>=3 first

char name[128]; // read name from input, uncommon
if (scanf("%127s", name) == 1) {

FILE *f = fopen(name, "ab+"); // open binary, append+read
if (!f) { /* not opened, handle error */ }

}

Returns a FILE * (a stream) used by all other functions
returns NULL on error (MUST test!)

int fclose(FILE *stream)
Writes any buffered data to disk, closes file
Returns 0 on success, EOF on error. SHOULD also test!

(tell user if save of precious data failed!)

File input/output

character-based
int fputc(int c, FILE *stream) // write char to file; also putc
int fgetc(FILE *stream) // read char from file; also getc
int ungetc(int c, FILE *stream) // puts ONE char back in stream

line-based (one text line)
int fputs(const char *s, FILE *stream) // writes string as is
int puts(const char *s) // writes string + \n to stdout
char *fgets(char *s, int size, FILE *stream)
// reads line into s, max. size-1 chars incl. \n, adds \0

formatted I/O (same as printf/scanf, from file in first arg)
int fscanf (FILE *stream, const char *format, ...)
int fprintf(FILE *stream, const char *format, ...)

Working with files
Typical sequence for working with files (name on command line)
#include <errno.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

if (argc != 2) {
fprintf(stderr, "correct usage: program filename\n");
return 1; // or some other error code

}
FILE *fp = fopen(argv[1], "r"); // or some other mode
if (!fp) { perror("error on open"); return errno; }

// use file: getc, fscanf, fgets, fprintf, etc.

if (fclose(fp)) { perror("error on close"); return errno; }
return 0;

}

Error functions

int feof(FILE *stream) nonzero if at EOF
int ferror(FILE *stream) nonzero if file had errors
Do NOT loop while !feof(f) :
EOF is NOT detected when at end, only when trying to read past it
⇒ loop while read OK; if not, check feof(f) or ferror(f)

Error codes
int errno global variable declared in errno.h
contains code of last error in a library function
(illegal operation, file not found, not enough memory, etc.)

void perror(const char *s) function from stdio.h
prints user message s, a colon : and then the error description
(same as given by char *strerror(int errnum) from string.h)

Direct I/O (binary format)

Read/write bytes as-is, without conversion, from/to binary streams
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *strm)
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE *strm)
read/write to/from address ptr nmemb objects of size bytes each
just like repeated calls to fgetc/fputc

Return value: number of complete objects read/written
If smaller than requested, find reason from feof and ferror

Use fread/fwrite if byte order same in memory and in file
(as specified in docs for file format: .bmp, .jpg, .zip etc.)
big endian, most significant byte first: 0xcafebabe=0xca 0xfe 0xba 0xbe
little endian, least significant byte first: Intel x86 (0xbe 0xba 0xfe 0xca)

Otherwise, read/write number byte by byte, (de)compose in needed order

File positioning

Reading and writing use the same file position indicator
long ftell(FILE *stream) returns position from start of file

int fseek(FILE *stream, long offset, int whence)
Sets file position indicator to offset; 3rd arg is reference point:
start (SEEK_SET), current point (SEEK_CUR), end(SEEK_END)

void rewind(FILE *stream) sets file position indicator to start
same as fseek(stream, 0L, SEEK_SET); clearerr(stream);

Use (re)positioning to skip parts of the file on reading,
or to write a selected part

MUST use fseek/fflush when switching between read and write!
Positioning may not be possible in any file (e.g. stdin/stdout)

int fflush(FILE *stream)
writes unwritten data buffers for the given file

Chars, ints and EOF revisited

Files (and standard input) contain bytes (chars)
EOF is NOT a char (the point is to distinguish it from any char!)

chars read by getchar or getc are unsigned, EOF is -1
variable read w/ getchar/getc must be int so it can fit either

scanf, fgets, fread read arrays of bytes (chars)
need no int, since they report end-of-file differently
EOF can never be in an array read (since it’s NOT a char)

Don’t mix signed and unsigned! char may be signed

If reading char as int, compare to an int: 0xFF, 0xDA, etc.
or if declaring unsigned char buf[]

If declared as char, compare with a char: ’\xff’, ’\xda’, etc.

C preprocessor: Macros

Preprocessing is done before actual compilation: cpp or gcc -E

object-like macro
#define NAME replacement
#define LEN 20

function-like macro
#define NAME(arg1,...,argn) replacement
#define MAX(a,b) ((a)>(b)?a:b)

#define NAME(arg1,arg2,...) replacement
can use VA_ARGS to refer to extra arguments

symbol witout value: used in conditional compilation
#define NEEDS_MATH_H
#undef SOME_DEFINED_NAME // undefine a defined macro

More about macros

Macros are NOT variables. The are like find-replace in a text,
actual compiler never sees macros, just code after replacement.

CAREFUL with macros!

Place args and body in parantheses (avoid precedence errors)
#define SQR(a) ((a)*(a))

code might have: ˜SQR(2+3) ˜((2+3)*(2+3))
all sets of parantheses are needed now!

Don’t use macros with side-effects if arg evaluated twice:
#define MAX(x,y) ((x) > (y) ? (x) : (y))

BAD use: MAX(++a,b)

Advanced macros: from tokens to strings

In macro replacements:
arg produces string literal for tokens represented by arg
x ## y produces string concatenation of tokens for x and y

#define STR(s) #s
#define STRSUB(s) STR(s)
#define JOIN(x,y) x ## y
#define SFMT(m) STRSUB(JOIN(%m,s))
#define MAX 32

scanf(SFMT(MAX), s); // scanf("%32s", s); stepwise:

SFMT(32)
STRSUB(JOIN(%32,s))
STR(%32s)
"%32s"

Conditional compilation

C preprocessor supports conditionals, using constant expressions
only the corresponding branch of the code will be compiled
// convert from byte buffer (least significant first) to int
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
// if both symbols are #define’d and their value is equal
// compile code for big-endian architectures
uint16_t x = b[0] | b[1] << 8; // different order
#else
// code for little-endian architecures
uint16_t x = *(uint16_t *)b; // same order
#endif

also: #elif meaning else if ...

#ifdef NAME if NAME is defined
#ifndefNAME if NAME is not defined

Header file inclusion and conditional compilation

header file inclusion
#include <file.h> search in system directories
#include "file.h" search current dir first, then system

conditional compilation: e.g. to avoid multiple inclusion
#ifndef _MYHEADER_H
#define _MYHEADER_H
// contents will not be compiled twice even if included twice
#endif

