Computer Programming
File I/O. Preprocessor Macros

Marius Minea

marius@cs.upt.ro

4 December 2017

mailto:marius@cs.upt.ro

Files and streams

A file is a data resource on persistent storage (e.g. disk).
File contents are typically sequences of bytes.

A stream is a program'’s view (logical view) of a file, also as

sequence of characters (bytes). ’character = byte‘

a communication “channel” between program and outside world

So far, we've used standard input, output, and error streams.

Input and output so far

fgets(...,stdin), printf, puts,
getchar,scanf,... putchar,...
program stdout
}(‘
Lr,
S 0, (s
& Ofs(. [O/e/'/'
0 W
[O'@/_/j }

stdin default: from keyboard
stdout default: to screen all three have type FILE *
stderr default: to screen

different logical purpose (results vs. errors)

These streams are automatically open when program runs

Input /output redirection

./program < in.txt ./program > out.txt
—

e
stdin program stdout

Can redirect standard streams to files from command line:
= without change, programs doing “usual” |/O work with files!

input: program < in.txt will read from in.txt
output: program > out.txt will write to out.txt
both: program < in.txt > out.txt

stderr: program 2> err.txt (2 is stderr descriptor)

Remember: can run command from C with system (stdlib.h)

Working with files from C

fread, fscanf, fwrite, fprintf,
— fgetc, fgets ... fputc, fputs,... —
in.txt || FILE *fi program FILE *fo out.txt
fi=fopen("in.txt", "r") fo=fopen("out.txt", "w")

To work with files, a program must
1. associate a stream with a file, by opening the file.
C uses the type FILE * to represent streams

2. work with the stream (FILE #) just like with stdin / stdout
using the same or similar functions from stdio.h

3. close the file

That's all we need to work with files!

Simple: show contents of text file

File name is 15t commandline argument (check that argc is 2)

#include <stdio.h>

int main(int argc, char *argv[]) {
FILE *f;
char buf [80];
if (argc == 2 && (f = fopen(argv[1], "r"))) {
while (fgets(buf, sizeof (buf), f)) fputs(buf, stdout);
fclose(f);
} // else report error

3

Text and binary streams

Text files are files with human-readable content:
.txt files, programs .c, .c++, web pages .html, .xml files, etc.

Text streams contain characters grouped in lines terminated by \n

Conversions may occur in reading/writing text streams.
e.g. end of line is \r\n in Windows vs. \n in Unix
C standard guarantees one-to-one correspondence if:
text contains only printable chars, tab and newline
no newline is immediately preceded by spaces
last character is a newline

Binary files are not human-readable as character sequences:
.exe, .mp3, though they may contain text: .doc, .pdf

Binary streams record data as-is .
The sequence of characters read is exactly the same as was written

= Any file (including text) may be opened as binary stream

File opening modes

r: open for reading (file must exist)

w: open for writing (truncated to length 0 if existing, else created)

a: open for appending (writing at end of file; created if inexistent)
any writes go to current end-of-file, regardless of using fseek

First character (r, w, a) of opening mode may be followed by:

+ (r+, w+, a+): open as stated, but can use for input and output
to write after a read, must set position (fseek), unless EOF
to read after a write, must set position (fseek) or fflush
a+: initial read position implementation-defined (glibc: at start)

b: opens binary file (otherwise: text; no explicit text mode)

x: (eXclusive) may be last char only in w mode
file must not exist; no shared access allowed (if system support)

Examples: rb+ (read/write, binary), wx, wb+x, a+x, etc.

Opening and closing files

FILE *fopen (const char *pathname, const char *mode)
arg. 1: file name (absolute or relative to current directory)
arg. 2: string with open mode: r, w, or a; optionally +, b, x

FILE *f1 = fopen("/home/u/t.txt", "r"); // fixed name, avoid
FILE *f2 = fopen(argv[2], "w"); // 2nd arg, check argc>=3 first
char name[128]; // read name from input, uncommon
if (scanf("%127s", name) == 1) {

FILE *f = fopen(name, "ab+"); // open binary, append+read

if ('f) { /* not opened, handle error */ }
}

Returns a FILE * (a stream) used by all other functions
returns NULL on error (MUST test!)

int fclose(FILE *stream)

Writes any buffered data to disk, closes file

Returns 0 on success, EOF on error. SHOULD also test!
(tell user if save of precious data failed!)

File input/output

character-based

int fputc(int c, FILE *stream) // write char to file; also putc
int fgetc(FILE *stream) // read char from file; also getc
int ungetc(int c, FILE #stream) // puts ONE char back in stream

line-based (one text line)

int fputs(const char *s, FILE *stream) // writes string as is
int puts(const char *s) // writes string + \n to stdout

char *fgets(char *s, int size, FILE *stream)

// reads line into s, max. size-1 chars incl. \n, adds \O

formatted 1/O (same as printf/scanf, from file in first arg)

int fscanf (FILE *stream, const char *format, ...)
int fprintf(FILE *stream, const char *format, ...)

Working with files

Typical sequence for working with files (name on command line)

#include <errno.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
if (arge !'= 2) {
fprintf (stderr, "correct usage: program filename\n");
return 1; // or some other error code
}
FILE *fp = fopen(argv[1], "r"); // or some other mode
if ('fp) { perror("error on open"); return errno; }

// use file: getc, fscanf, fgets, fprintf, etc.

if (fclose(fp)) { perror("error on close"); return errno; }
return O;

Error functions

int feof (FILE *stream) nonzero if at EOF
int ferror(FILE *stream) nonzero if file had errors

Do NOT loop while +feef(E)- :
EQF is NOT detected when at end, only when trying to read past it
= loop while read OK; if not, check feof (f) or ferror (f)

Error codes

int errno global variable declared in errno.h
contains code of last error in a library function

(illegal operation, file not found, not enough memory, etc.)

void perror(const char *s) function from stdio.h
prints user message s, a colon : and then the error description
(same as given by char *strerror(int errnum) from string.h)

Direct I/O (binary format)

Read/write bytes as-is, without conversion, from/to binary streams
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *strm)
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE *strm)
read/write to/from address ptr nmemb objects of size bytes each

just like repeated calls to fgetc/fputc

Return value: number of complete objects read/written

If smaller than requested, find reason from feof and ferror
Use fread/fwrite if byte order same in memory and in file
(as specified in docs for file format: .bmp, .jpg, .zip etc.)

big endian, most significant byte first: Oxcafebabe=0xca 0xfe Oxba Oxbe
little endian, least significant byte first: Intel x86 (0xbe Oxba Oxfe Oxca)

Otherwise, read/write number byte by byte, (de)compose in needed order

File positioning

Reading and writing use the same file position indicator
long ftell(FILE *stream) returns position from start of file

int fseek(FILE *stream, long offset, int whence)
Sets file position indicator to offset; 3rd arg is reference point:
start (SEEK_SET), current point (SEEK_CUR), end(SEEK_END)

void rewind(FILE *stream) sets file position indicator to start
same as fseek(stream, OL, SEEK_SET); clearerr(stream);

Use (re)positioning to skip parts of the file on reading,
or to write a selected part

MUST use fseek/fflush when switching between read and write!

Positioning may not be possible in any file (e.g. stdin/stdout)

int fflush(FILE *stream)
writes unwritten data buffers for the given file

Chars, ints and EOF revisited

Files (and standard input) contain bytes (chars)

EOF is NOT a char (the point is to distinguish it from any char!)
chars read by getchar or getc are unsigned, EOF is -1
variable read w/ getchar/getc must be int so it can fit either

scanf, fgets, fread read arrays of bytes (chars)
need no int, since they report end-of-file differently
EOF can never be in an array read (since it's NOT a char)

Don’t mix signed and unsigned!‘ char may be signed

If reading char as int, compare to an int: OxFF, OxDA, etc.
or if declaring unsigned char buf[]

If declared as char, compare with a char: >\xff’, >\xda’, etc.

C preprocessor: Macros

Preprocessing is done before actual compilation: cpp or gcc -E

object-like macro
#define NAME replacement

#define LEN 20

function-like macro

#define NAME(argl,...,argn) replacement

#define MAX(a,b) ((a)>(®)7a:b)

#define NAME(argl,arg2,...) replacement
can use VA_ARGS to refer to extra arguments

symbol witout value: used in conditional compilation
#define NEEDS_MATH_H
#undef SOME_DEFINED_NAME // undefine a defined macro

More about macros

Macros are NOT wariables. The are like find-replace in a text,
actual compiler never sees macros, just code after replacement.

CAREFUL with macros!

Place args and body in parantheses (avoid precedence errors)

#define SQR(a) ((@)*(a))
code might have: ~“SQR(2+3) T ((2+3)*(2+3))
all sets of parantheses are needed now!

Don't use macros with side-effects if arg evaluated twice:
#define MAX(x,y) (x) > (y) 7 x) : (y))
BAD use: MAXL{++a;b)

Advanced

In macro
arg
X ## y

#define
#define
#define
#define
#define

macros: from tokens to strings

replacements:
produces string literal for tokens represented by arg

produces string concatenation of tokens for x and y
STR(s) #s
STRSUB(s) STR(s)
JOIN(x,y) X ## y
SFMT (m) STRSUB(JOIN(%m,s))
MAX 32

scanf (SFMT(MAX), s); // scanf("%32s", s); stepwise:

SFMT (32)

STRSUB(JOIN(%32,s))
STR(%32s)

"%325 n

Conditional compilation

C preprocessor supports conditionals, using constant expressions
only the corresponding branch of the code will be compiled

// convert from byte buffer (least significant first) to int
#if _ BYTE_ORDER__ == __ ORDER_BIG_ENDIAN _

// if both symbols are #define’d and their value is equal

// compile code for big-endian architectures

uinti16_t x = b[0] | b[1] << 8; // different order

#else

// code for little-endian architecures

uint16_t x = *(uint16_t *)b; // same order

#endif

also: #elif meaning else if ...

#ifdef NAME if NAME is defined
#ifndef NAME if NAME is not defined

Header file inclusion and conditional compilation

header file inclusion
#include <file.h> search in system directories
#include "file.h" search current dir first, then system

conditional compilation: e.g. to avoid multiple inclusion

#ifndef _MYHEADER_H

#define _MYHEADER_H

// contents will not be compiled twice even if included twice
#endif

