Computer Programming
Modular compilation. Abstract data types

Marius Minea

marius@cs.upt.ro

18 December 2017

mailto:marius@cs.upt.ro

How to structure complex programs?

Large programs are written by many users, in many source files.
can be compiled separately (“translation units”),
then linked into a single executable

Need to:

control sharing of variables and functions:
allow use of functions / variables defined elsewhere
allow declarations which are not shared (no name conflicts)

ensure functions are used correctly (with right parameters)

This is controlled through scope and linkage of identifiers

Properties of identifiers

Scope of identifiers: where is identifier visible ?
block scope: from declaration to end of enclosing }
file scope: if declared outside any block
also: function prototype scope (ID in function header)
function scope (goto labels: can't jump out)

if redeclared, outer scope hidden while inner scope in effect

Linkage of identifiers: do they refer to the same object ?
external: same in all translation units (files) making up program
default for functions and file scope identifiers;
explicit with extern declaration

internal: same within one translation unit; if declared static

none: each declaration denotes distinct object (for block scope)

Storage duration of objects (variables)

automatic, for variables declared with block scope
lifetime: from block entry to exit; re-initialized every time

static: lifetime is program execution; initialized once
allocated: with malloc

thread: for _Thread_local objects (since C11)

Declarations and definitions

An identifier can be declared multiple times, only defined once
A declaration with initializer is a definition.

A file scope declaration with no initializer and no storage class

specifier or with static is a tentative definition

several tentative definitions for same object must match
become definition by end of translation unit

How to use in practice

functions: define in one file, declare in all others
variables: define in one file, declare extern in all others

Can put declarations in a header file, and include where needed

Typical library structure

mylibrary.h: header file, has declarations made visible for use:
typedefs, function declarations (NOT definitions/bodies), macros,
declarations of global variables (like errno), etc.

NO definitions (would duplicate if header included in many .c files)

#ifndef _MYLIBRARY_H

#define _MYLIBRARY_H

// any declarations available to use
#endif

mylibrary.c : code / definitions for declarations from .h
(function/variable definition; struct definition if only pointer in .h)
+ all implementation details that should be hidden from user
#include "mylibrary.h" (declaration/definition consistency)

gcc -c mylibrary.c compiles to object file: mylibrary.o
contains object code for functions, symbols for function names

main file has #include "mylibrary.h" , uses functions, types, ...
gcc program.c mylibrary.o compiles and links with library

Abstract datatypes

An abstract datatype is a mathematical model for datastructures
defined by the operations applicable to them (functions)
and the constraints among them (axioms)

without exposing details about the implementation.

ADTs separate interface from implementation
the interface provides the abstraction
the implementation is encapsulated (hidden)

ADTs allow changeable and interchangeable implementations
client program relies only on interface, is not affected

An example: FILE *

C provides the FILE * type to work with files.

A FILE * can only be used with the functions from stdio.h:

a value of type FILE * can only be obtained from fopen

we can't dereference a FILE *, not knowing the FILE type
the declaration is not accessible, it's not in stdio.h
it's some structure, declared only in the source of the library

can't index, no pointer arithmetic, etc., only standard functions

Lists as abstract data types

Def: A list is empty, or an element followed by a list.

An ADT list L with elementtype E is usually defined by:

nil : () — L empty list constructor

can also be constant rather than function
isempty : L — Bool is empty ?
cons: ExL— L constructor: new list from element and rest
head : L — E first element
tail : L — L list with all elements after head

and the axioms
head(cons(e,l)) =e and tail(cons(e,l)) =1

Some languages have lists as algebraic data type:
a sum type (alternative) between (1) the value for empty list, and
(2) a product type of an element and a list (constructor cons).

How to declare an ADT with structures

For structure types, encapsulation is enforced if:
header file only contains declaration of pointer type
typedef struct mytype *mytype_t;

C file for implementation contains structure definition

struct mytype {
// declare fields here
};

// functions can access structure fields

Exported functions only work with pointer type mytype_t
= not knowing structure, user program cannot access fields

The FILE datatype also enforces such an encapsulation

Example ADT for integer list

#ifndef _INTLIST_H
#define _INTLIST_H

typedef struct ilst *intlist_t;

intlist_t empty(void);

int isempty(intlist_t 1lst);

int head(intlist_t 1lst);

intlist_t tail(intlist_t 1lst);
intlist_t cons(int el, intlist_t tl1);

// for freeing memory only: splits first element from tail
// if elp non-NULL, store value of head there
intlist_t decons(intlist_t 1lst, int *elp);

#endif

Implementing an abstract datatype.

Linked lists and queues

Implementing the list ADT: file intlist.c

#include <stdlib.h> // for NULL and malloc
#include "intlist.h" // ensures .h and .c consistent

struct ilst {
intlist_t nxt;
int el;
s
intlist_t empty(void) { return NULL; }
int isempty(intlist_t 1st) { return lst == NULL; }

int head(intlist_t 1st) { return lst->el; }

intlist_t tail(intlist_t 1st) { return lst->nxt; }

Implementing the list ADT (cont'd)

intlist_t cons(int el, intlist_t tl1)
{
intlist_t p = malloc(sizeof(struct ilst));
if (!p) return NULL; // could report some error

p—>el = el;
p—>nxt = tl;
return p;

b

// returns tail, assigns *elp with head, deletes cell
intlist_t decons(intlist_t 1lst, int *elp)
{

if (elp) *elp = lst->el;

intlist_t tl = lst->nxt;

free(1st); // just first cell, keeps rest

return tl;

Hiding / exposing the representation

If header file declares (exposes) only a pointer type to the data,
implementation is hidden
incomplete structure type: typedef struct ilst *intlist_t
or a void * (but dangerous: no type safety)

Declaration of structure should be hidden in .c file
not exposed in .h file (which is included by all clients)

struct ilst {
intlist_t nxt;
int el;

};

If library client has this structure, datatype is no longer abstract
can use internal representation, change the structure in-place, etc.

Can we do lists of arbitrary types?

C does not have polymorphism or parametric types
= cannot declare, e.g., list of arbitrary type

Could do: typedef int elemtype; (or even a #define)
and have everything else use elemtype

But need to recompile everything when changing elemtype
binary code differs even for assignment/parameter passing
due to varying element size; even more so for addition, etc.

If instead of values we store pointers to values,
we can have just one implementation (list of void *)
must separately allocate memory for elements
program logic must know element type (info not in the list)

Example: list reversal in-place

To modify the list in-place, we need access to the representation:

struct ilst {
intlist_t nxt;
int el;

};

Two pointers, splitting list:
one to part of list already reversed (initially NULL)
one to rest of list to be reversed (initially full list)

intlist_t rev2(intlist_t rest, intlist_t done) {
if (isempty(rest)) return done;
intlist_t nxt = rest->nxt; // directly change pointers
rest->nxt = done; // link first cell to done part
return rev2(nxt, rest); // tail-recursive, becomes loop
}
intlist_t rev(intlist_t 1lst) { return rev2(lst, empty()); }

Traversing linked list with address of pointer

When inserting/deleting into a linked list (e.g. ordered list),
must change link in cell prior to the one inserted/deleted

keep address of pointer to be changed (address of link field)
better than with address of previous element (may not exist)

intlist_t hd = cons(3, cons(4, cons(7, NULL))); // in main
void trav_addr(intlist_t 1st) {
for (intlist_t *adr = &lst; *adr; adr = &(*adr)->nxt)
printf("adr: %p, *adr: %p\n", adr, *adr);
} // might print:
adr: Ox4dea8, *adr: 0xda050
adr: 0xda058, *adr: 0xda030
adr: 0xda038, *adr: 0xda010

In picture, top row denotes addresses of individual fields
0xda050 0x4da058 0xda030 0xda038 0xda010 0xda018

| 3 [o0xda030}——| 4 [o0xda0t0}—— 7 | NULL |

0x4dea8

Creating a list using addresses of pointers

intlist_t rdlist(void) { // read ints and place in list
intlist_t hd, *adr = &hd; // address where t<o link next cell
for (int n; scanf("%d", &n) == 1; adr = &(*adr)->nxt)

(*adr = malloc(sizeof(*hd)))->el = n; // malloc and set elem
*adr = NULL; // done, set link to next cell to NULL
return hd; // value from first cycle or NULL above if empty

}
0x0cb0

adr| 0x0cbO | hd| ?77]
0x0cb0 0x4850 0x4858

adr| 0x4858 | hd| 0x4850 | | 3] 7777]

0x0cb0 0x4850 0x4858 0x48700x4878
adr| 0x4878 | hd| 0x4850 | | 3[o0x4870}—| 4| 7777|

0x0cb0 0x4850 0x4858 0x4870 0x4878 0x48900x4898
adr| 0x4898 | hd| 0x4850 | | 3[0x4870}—| 4[o0x4890}—| 7] 7777]

0x0cbO 0x4850 0x4858 0x4870 0x4878 0x48900x4898
adr| 0x4898 | hd| 0x4850 | | 3]o0x4870—] 4]0x4890}—{ 7|NULL|

Implementing a queue ADT

Queue: first-in, first-out (FIFO): insert/remove at different ends

#ifndef _QUEUE_H
#define _QUEUE_H

typedef struct q *queue_t;

queue_t q_new(void);

int q_isempty(queue_t q);

int q_get(queue_t q);

queue_t q_put(queue_t q, int el);
void q_del(queue_t q);

void q_print(queue_t q);

#endif

Implementing a queue

Use a dummy cell before actual first element; each get deletes it,
next cell becomes dummy. Invariant: empty queue has hd==1ast.

typedef struct e { // cell for element, with pointer to next
struct e *nxt;

int el;

} elem_t;

struct q {
elem_t *hd; // dummy; actual first cell is next
elem_t *last; // last cell (or dummy if empty)

};

queue_t q_new(void) {
queue_t q = malloc(sizeof(struct q));
g->hd = g->last = malloc(sizeof(elem_t)); // both dummy cell
g->hd->nxt = NULL; // no actual element
return q;

}

