Computer Programming
Input/output functions

Marius Minea

marius@cs.upt.ro

6 November 2017


mailto:marius@cs.upt.ro

All inputs must be checked!

A program will not always receive the data it asks for

User may make mistakes, or may be evil
= program must check that data was read correctly

MUST check return code of input function (NOT just value read)

Avoid overflow when reading strings and arrays
stop reading when array limit is reached

Buffer overflows corrupt memory (program data)

= system is vulnerable to intruder attacks
Unvalidated input may cause code injection (attacker runs code)

= some of the most dangerous and COStIy errors

A badly written program

. are worse than no program(mer) at all!
An ignorant programmer



Always check input was successful (and correct)!

You can only ask to read data, the call may not succeed:
system: no more data (end-of-file), read error, etc.
user: data not in needed format (illegal char, not number, etc.)

[/O functions report both a result and an error code:

1. expand result datatype to include error code
getchar() : unsigned char converted to int,
or EOF (-1) which is different from any unsigned char

2. return type may have a special invalid/error value
fgets returns address where the line was read (first argument)
or NULL (invalid pointer value) when nothing read

3. return error code and store result at given pointer
scanf returns no. of items read (can be 0, or EOF at end-of-input)
takes as arguments addresses where it should place read data



Review: /O for one char

Read:  int getchar(void);
Call (use):  getchar() no parameters

Returns an unsigned char converted to int,
or EOF (negative, usually -1) if no char could be read

Un-read: int ungetc(int c, FILE *stream);
puts a character c back into a given input stream (file).
for standard input: ungetc(c, stdin);
DON'T unget more chars at once (effect not guaranteed);
must read between successive calls to ungetc

Print a char:  int putchar(int c);
writes an int, converted to unsigned char to stdout;
returns its value, or EOF (constant -1) on error

DON'T putehar{EBF) : -1 is converted to 255 (an actual char)

All input/output functions: in stdio.h  (unless noted)



Read a text line: fgets

Declaration: char *fgets(char *s, int size, FILE *stream);

Reads up to and including newline \n, max. size-1 characters,
stores line in array s, adds ’\0’ at the end.

char tab[80];
if (fgets(tab, 80, stdin)) { /* line has been read */ }
else { /* nothing read, likely EOF */ }

Third parameter to fgets indicates the file from which to read:
stdin (stdio.h) is standard input (keyboard unless redirected)

WARNING!  NO reading without checking!
Check successful return code, anything else is too late!

fgets returns NULL if nothing read (end-of-file).

if successful returns address passed as argument (thus non-null)
= Test non-null result to find out if read successful



Read line by line until end of input

char s[81];
while (fgets(s, 81, stdin)) printf("%s", s);

A line with > 80 chars will be read and printed piecewise (OK!)

More complex: can test if read line was truncated:
int c; char s[81];

if (fgets(s, 81, stdin)) // line was read
if (strlen(s) == 80 && s[79] !'= ’\n’ // unfinished
&& ((c = getchar()) != EOF) { // EOF not reached
printf ("incomplete line: %s\n", s);
ungetc(c, stdin); // put char c back
} else printf("complete line: %s\n", s);

C11 standard removed function é‘/@%/ﬁ did not limit size read

= it is impossible to use g&t4 safely
= buffer overflow, memory corruption, security vulnerabilities



Print a string

Declaration: int puts(const char *s);
prints string s followed by newline \n

puts("text; newline will be added");
Declaration: int fputs(const char *s, FILE *stream);
prints string s to given output stream

fputs("text with no newline added", stdout);

fputs(s, stdout); islike printf("%s", s);
prints string s as is, without additional newline
stdout is standard output (screen unless redirected)

puts and fputs return EOF on error, nonnegative on success



Review: printf (formatted output)

int printf(const char* format, ...);
functions with variable number of parameters: discussed later

First parameter: the format string; may contain:

usual characters (are printed)

format specifiers: % and a letter:
%e char, %d, %i decimal, %e, %£, %g real, %o octal, %p pointer,
%s string, %u unsigned, %x heXadecimal, %a hex float

Remaining parameters: expressions, their values are printed
their number and type must correspond to format specifiers

Result: number of characters printed (usually not used/ignored)

Example:
printf ("square root of %d is %f\n", 3, sqrt(3));



Formatted input: read numbers

int scanf(const char* format, ...);

First arg: string, with format specifiers (some differences to printf!)

Remaining parameters: addresses where to store read values‘

Need addresses, NOT necessarily & (one way to get addresses)
DON'T use & for strings: array name IS already its address

Returns number of objects read (assigned) (NOT their value!)
or EOF when error/end-of-file reached before anything read

Read one integer:

int n;

if (scanf("%d", &n) == 1) // one number read
printf ("number read: %d\n", n);

else puts("could not read number");



More numbers with scanf

Format specifiers: like for printf
%u unsigned %o octal  %x heXadecimal %i any int format
CAUTION! ,f float Y1f double (same in printf)

Reading numbers consumes and ignores any initial whitespace
\t \n \v \f \r and space, as checked by isspace()

Like in printf, can combine arbitrary formats

WARNING!  MUST CHECK scanf return value!
(number of objects read successfully)

double x; float y; // CAUTION : %f float %1f double
if (scanf(")1£f%f", &x, &y) != 2) { /* handle error */ }
else { /* can use x, y */ }



Read a word with scanf

Format letter s: for reading a word (string WITHOUT whitespace)
WILL NOT read a sentence "This is a test."
to read a line, use fgets

Arrays are ALWAYS limited!

= MUST give max. length (a constant) between % and s
one less than array length, scanf will add \0

NEVER use /fJ)¢)/ in scanf |- buffer overflow

char word[33];
if (scanf("%32s", word) == 1)
printf ("Word read: %s\n", word);

scanf with s format consumes and ignores initial whitespace:
\t \n \v \f \r and space, as checked by isspace()

CAUTION! Array names are addresses, DON'T use &

CAUTION! Format s reads a word (up to whitespace), not a line!



Good practice: read and process while successful

For repeated processing (while input matches format), write:
while (read successful) process data

while (fgets(...)) { /*process line */}

while ((c = getchar()) != EQOF) { /#process c */}
while (scanf(...) == how-many-to-read) { /*use them*/}
On loop exit check: end-of-file? (nothing more), or (format) error.

int feof (FILE *stream);
returns nonzero if end-of-file reached for given stream
if feof(stdin) input is finished
else input does not match format = read next char(s) and report
, . white—{{tfeof{stdin))
DON'T use feof in read loop. o ]
After last good read (number), end-of-input is not yet reached
unless nothing more (no whitespace, newline) after it

= next read will not succeed, but is not checked



Handling input errors
Simplest: exit program
primitive, but incomparably better than continuing with errors

void exit(int status) from stdlib.h ends program

Can write an error function that prints a message and calls exit ()

#include <stdio.h>

#include <stdlib.h>

void fatal(char *msg)

{
fputs(msg, stderr); // to screen unless redirected
exit (EXIT_FAILURE); // or exit(1l)

+

We can then use this function for every read:

if (scanf("%d", &n) != 1) fatal("error reading n\n");
// got here, use n

Good practice: | Always print error messages to stderr‘

can separate errors from output (using redirection)



Recovering from input errors

CAUTION! scanf does not consume non-matching input
=- must consume bad input before trying again

int m, n;
printf ("Input two numbers: ");
while (scanf("%d%d", &m, &n) !'= 2) { // while not 0K

for (int c; (c = getchar()) != ’\n’;) // skip to end of line
if (c == EOF) exit(1); // nothing more, done
printf("try again: ");
}

// can use m and n now



CAUTION: Check bounds when filling an array

Often, we have to fill an array up to some stopping condition:
read from input upto a given character (period, \n, etc)
copy from another string or array

Arrays must not be written beyond their length!
Test array not full before filling element!

for (int 1 = 0; i < len; ++i) { // limit to array size
tab[i] = ...; // assign with value if read successful
if (some other stopping condition) break/return;

}

// here we can test if maximal length reached

// and report if needed



scanf: matching ordinary chars in format
Besides format specifiers (%), format string may have ordinary chars
printf: printed as such

scanf:  must appear in input
Example: reading calendar date in dd.mm.yyyy format

unsigned d, m, y;
if (scanf("%u.%u.%u", &d, &m, &y) == 3)

printf("read 3 values: d=%u, m=%u, y=ju\n", d, m, y);
else printf("error reading date\n");

input 5.11.2013 (with periods!) = d=5, m=11, y=2013

see later how to enforce exactly 2 or 4 digits

scanf reads until input does not match format
Non-matching chars are not read; those variables are not assigned

scanf ("}d%d", &x, &y);
input: 123A  returns 1; x

123, y: unchanged; input rest: A

scanf ("%d%x", &x, &y);
input: 123A  returns 2;

»
1]

123,y = 0xA (10)



Reading strings with certain characters

allowed characters: between [ ] (ranges: with -)
Reading stops at first disallowed character

char a[33]; if (scanf("}32[A-Za-z_]", a) == 1) ...
max. 32 letters and _

char num[81]; if (scanf("%80[0-9]", num) == 1) ...
string of digits

WARNING! MUST give max. length between % and [ ]
Reading a string except for disallowed (stopping) chars:
like above, but use ~ after [ to specify disallowed chars
char t[81]; if (scanf("%80["\n.]l", t) == 1) ...

reads up to period or newline

WARNING! Format is [ 1, NOT with s: %26fA-Z1s



Reading a fixed number of chars

One character:
int ¢ = getchar(); if (c != EOF) { /*read 0K */}
int c; if ((c = getchar()) != EOF) { /#read 0K */}

With scanf (use char, not int; useful for arrays)
char c; if (scanf("%c", &c) == 1) { /* read OK */}

Reading a fixed number of chars:

char tab[80]; scanf("%80c", tab);

reads EXACTLY 80 chars, anything (including whitespace)
DOES NOT add °\0’ at end = can't know if all read

Check how many read by initializing with zeroes and testing length:
(or with %n format, see later)

char tab[81] = "";
scanf ("%80c", tab);
int len = strlen(tab); // will be between 0 and 80



Whitespace handling in scanf

Numeric formats and s consume and ignore initial whitespace
"%d%d"  two ints separated and possibly preceded by whitespace

In formats ¢ [ ] [~ ] whitespace are normal chars (not ignored)

A white space in the format consumes any > 0 whitespace in input
scanf (" "); consumes whitespace until first non-space char

"%c %c" reads char, consumes > 0 whitespace, reads other char
"%d %E" is like "%d%E" (whitespace allowed anyway)

CAUTION! "%d " : space after number consumes ALL whitespace
(including newlines!)

Consume whitespace, but not newline \n:
scanf ("%x [\t\v\f\r 1");
* modifier means consume and ignore (no address is given)



Consume and ignore with scanf

To consume and ignore (skip) data with a given format:

Use * after %, without specifying address where to read

= scanf reads according to pattern, but does not store data
and does not count in result (number of read objects)

Example: text with three grades and average, need just average:

int avg;
if (scanf ("%*d%*d%*d%d", &avg) == 1) { /* use */ }
else { /* wrong format, handle error */ }

Example: consume rest of line

scanf ("%x["\nl"); // consume up to \n, without \n
if (getchar() == EOF) { /* end of input */ }
// otherwise, getchar() has consumed \n, continue



Specifying limits in scanf

Number between % and format character limits count of chars read
%4d int, at most 4 chars (initial spaces don't count, sign does!)

scanf ("%d%d", &m, &n);
scanf ("%2d%2d", &m, &n);
scanf ("%d.%d", &m, &n);
scanf ("%f", &x);

scanf ("%d%x", &m, &n);

12 34
12345
12.34
12.34
123a

m=12 n=34

m=12 n=34 rest: 5
m=12 n=34
x=12.34

m=123 n=0xA



Format specifiers in scanf

%d: signed decimal int

%i: signed decimal, octal (0) or hexadecimal (0x, 0X) int

%o: octal (base 8) int, optionally preceded by 0

%u: unsigned decimal int (warning: accepts negative and converts)
%x, %X: hexadecimal int, optionally with 0x, 0X

%c: any char, including whitespace

%MAXs: string of chars, until first whitespace. '\0’ is added
WMAX[---]: string of indicated allowed characters

AMAX["---]: string except indicated disallowed chars

MUST have a constant MAX unless assignment suppressed with *
ha, %A, %e, %E, ht, hF, %g, %G: real (possibly with exponent)

%p: pointer, as printed by printf

%in: writes into argument (int *) count of chars read so far

does not read; does not add to count of read objects (return value)
%% percent character



Format specifiers in printf

%d, %i: signed decimal int

%o: signed octal int, without initial 0

%u: unsigned decimal int

%%, %hX: hexazecimal int, without 0x/0X; lower/upper case

%c: character

%s: string of characters, up to '\0' or indicated precision

%, %F: real w/o exponent; 6 decimal digits; no dot if O precision
%e, %E: real with exponent; 6 decimal digits; no dot if O precision
%g, hG: real, like %e, %E if exp. < -4 or > precision; else like %£.
Does not print zeroes or decimal point if useless

%a, %A: hexadecimal real with decimal 2's exponent Oxh. hhhhp+d
%p: pointer, usually in hexadecimal

’in: writes into argument (int *) count of chars written so far
%h: percent character



Formatting: modifiers

Format specifiers may have other optional elements:
% flag size . precision modifier type

Flags: *: field is read but not assigned (is ignored) (scanf)
-: aligns value left for given size (printf)
+: + before positive number of signed type (printf)
space: space before positive number of signed type (printf)
0: left-filled with O up to indicated size (printf)
Moditiers:

hh: argument is char (for d i oux Xn format) (1 byte)

char c; scanf("%hhd", &c); in: 123 — ¢ = 123 (1 byte)

h: argument is short (for d i ouxXn format), e.g. %hd
1: arg. long (format diouxXn) or double (fmt. aAeEfFgQG)
long n; scanf(")1d", &n); double x; scanf("%1f", &x);

11: argument is long long (for dioux Xn format)
L: argument is long double (for aAeEfF gG format)



Formatting: size and precision

Size: an integer

scanf: maximal character count read for this argument
printf: minimal character count for printing this argument
right aligned and filled with spaces, or according to modifiers

Precision: only in printf; dot . optionally followed by an integer
(if only dot, precision is zero)

minimal number of digits for diouxX (filled with 0)

number of decimal digits (for Eef) / significant digits (for Gg)
printf ("|%7.2f|", 15.234); | 15.23| 2 decimals, 7 total
maximal number of chars to print from a string (for s)

char m[3]="Jan"; printf("%.3s", m); (for string w/o *\0”)

In printf, can have * instead of size and/or precision
Then, size/precision is given by next argument:
printf("%.*s", max, s); prints at most max chars



Sample formatted output

Floating point numbers in various formats:

printf("%f\n", 1.0/1100); // 0.000909 : 6 decimal digits

printf ("%g\n", 1.0/1100); // 0.000909091 : 6 significant dig.
printf("%g\n", 1.0/11000); // 9.09091e-05 : 6 significant dig.
printf ("/e\n", 1.0); // 1.000000e+00 : 6 decimal digits
1.
1.

printf ("%f\n", 0); // 1.000000 : 6 decimal digits
printf ("/g\n", 1.0); // 1 : no period and useless zeroes
printf("%.2f\n", 1.009); // 1.01: 2 decimal digits
printf("%.2g\n", 1.009); // 1: 2 significant digits

Writing integers in table form:

printf (" |%6d|", -12); | -12| printf("|% dl", 12); | 12]

printf ("|%-6d|", -12); |-12 | printf("|%06d|", -12); [-00012|
printf("|%+6d|", 12); | +12|

Write 20 characters (printf returns count of written chars)
int m, n, len = printf("%d", m); printf("%*d", 20-len, n);



Examples of formatted input

Two characters separated by a single space (consumed by %*1[ 1)
char cl, c2; if (scanf("%c%*x1[ 1%c", &cl, &c2) == 2)
Read an int with exactly 4 digits: unsigned nl, n2, x;
if (scanf ("%n’%4u%n", &nl, &x, &n2)==1 && n2 - nl == 4)...
"%n" counts read chars; store counters in nl, n2, then subtract
Reads/checks for a word that must appear: int nr=0;

scanf ("http://%n", &nr); if (nr == 7) { /*appears */}
else { /* does not reach %n, nr stays 0 */}

Ignores up to (and excluding) a given char (\n):

scanf ("%*["\n]");

Test for the right number of read objects, not just nonzero!

if (scanf("%d", &n) == 1), not just if (scanf("%d", &n))
scanf may also return EOF, which is nonzero!

For integers, test overflow using extern int errno;

#include <errno.h> // declares errno and error codes
if (scanf("%d", &x) == 1)) // test reset errno on overflow
if (errno == ERANGE) { printf("number too big"); errno = 0; }



ERRORS with reading from input

NO! srire—~seant%——"5———1 DON'T test for nonzero result.
It could be > 0 (items read), or -1 (EOF), nothing read!
YES: while (scanf("}...", ...) == how-many-items-wanted)

NO! seanft%20fa—=ts"—buf). The formatis [1, not H=
YES: if (scanf("%20[a-z]", buf) == 1) ...

NO! seanf%20s %4 —name;—&grade)>. |he s format reads

everything non-whitespace, so it won't stop at comma
YES: if (scanf("%20[",],%d", name, &grade) == 2)

to read a string with no comma (all else allowed, including
whitespace), the comma, and a number



