
Formal Verification

Temporal Logic. Model Checking Basics

13 October 2008

• Modeling systems using finite-state machines

• Formal specification of sequencing properties: temporal logic

• Model checking: verification by traversing the state graph

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 2

Q: What kind of systems can we verify ?

A: systems whose behavior is described precisely ⇒ mathematically

One of the simplest models: finite state machine

states and transitions (informally: “circles and arrows”)

Another view: system state: set of all quantities that determine the

behavior of the system in time

Representation: every state has unique binary encoding (state variable)

Definition of state: depends on abstraction level

Example for a processor: instruction set level; internal organization

(incl. pipeline); register transfer level; gate-level; transistor level

– discrete, continuous or hybrid systems

– finite (⇒ must be discrete) or infinite (continuous systems; programs

with recursion or dynamic data structures)

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 3

Modeling finite state systems

Finite state machines (automata): defined by states and transitions

ex. program state = variables + prog. counter; transitions = statements

(finite state if finite types, no recursion, no dynamic data)

Our model: a set V = {v1, v2, · · · , vn} of variables over a domain D

– a state: an assignment s : V → D of values for each variable in D

– A state (assignment) ⇔ a formula true only for that assignment

〈v1 ← 7, v2← 4, v3← 2〉 (v1 = 7) ∧ (v2 = 4) ∧ (v3 = 2)

– A formula ⇔ the set of all assignments that make it true

⇒ sets of states: representable by logic formulas, e.g., v1 ≤ 5 ∧ v2 > 3

– A transition s→ s′ has two states ⇒ a formula over V ∪ V ′

where V ′ = copy of V (next state variables)

e.g., (semaphore = red) ∧ (semaphore′ = green)

– Transition relation: set of all transitions = a formula R(V, V ′)

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 4

Modeling with Kripke structures

Kripke structure = finite-state automaton with labeled states

M = (S, S0, R, L)

(compare with automata: labels (input symbols) on transitions)

S: finite set of states

S0 ⊆ S: set of initial states

R ⊆ S × S: transition relation

transition relation is total if every state has at least one transition

∀s ∈ S ∃s′ ∈ S . (s, s′) ∈ R

L : S → P(AP): state labeling function P: powerset (set of subsets)

where AP = set of atomic propositions (observable boolean features

that appear in formulas, properties, specifications). Examples:
a state is stable (or not)

define the proposition: bad ::= number of errors > 0

Path (trajectory) from a state s0: infinite sequence of states:

π = s0s1s2 . . ., such that R(si, si+1) for all i ≥ 0

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 5

Nondeterminism

Transitions are given as a relation, not a function.

⇒ there can be several states s′ such that s→ s′, i.e., (s, s′) ∈ R

In this case the model (Kripke structure) is called nondeterministic

(the future behavior in a state is not uniquely determined).

This is different from the DFA / NFA distinction: finite state automata

have transitions labeled with input symbols

⇒ deterministic if unique next state for given state and input symbol

(even if different inputs can lead to different states)

For systems viewed as open (interacting with an environment), this is

called input nondeterminism

Typically, we view Kripke models as closed; we will discuss possible

parallel composition with an environment

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 6

Expressing behavior

Input-output (functional) behavior is not enough for many systems:

Reactive systems interact with environment: reaction to a stimulus

⇒Often have infinite execution (operating systems, schedulers, servers)

⇒ A computation is an infinite sequence of states

Desired properties:

A given (error) state is not reached (reachability problem)

The system does not deadlock (deadlock freedom), etc.

More general properties can be described in temporal logic

= a modal logic, i.e., truth is qualified (possibly, always, etc.)

In this case: with temporal modalities: before, after, in the future, ...

– used already by ancient philosophers for reasoning about time

– formalized and applied by Pnueli (1977) to concurrent programs

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 7

Linear Temporal Logic (LTL)

Defined by Amir Pnueli in 1977 (ACM Turing Award 1996)

Describes event sequencing along an execution path ⇒ linear structure

– an event happens in the future

– a property is invariant (holds everywhere) starting at a given state

– an event follows another event

Temporal operators (truth modalities along an execution trace)

• X (next): in the next state also written ◦
• F (future): sometime in the future ⋄
• G (globally): in every future state (including now)

unary operators, refer to one property

• U (until)

binary operator, property1 until property2

Sometimes also: release operator R (dual to until). Ignored here.

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 8

LTL Syntax

Express that a property is true for all paths

⇒ using the universal quantifier A

⇒ LTL formulas are of of the form A f , where f is a path formula

Syntax of path formulas:

f ::= p base case: p ∈ AP is an atomic proposition

| ¬f1 | f1 ∨ f2 | f1 ∧ f2 usual boolean connectors

| X f1 | F f1 | G f1 | f1 U f2 temporal operators

Since the A quantifier is mandatory, and appears only once, it is some-

times left implicit (some authors write path formulas only)

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 9

LTL Semantics

LTL formulas of the form A f have their meaning defined in a state

⇒ called state formulas: true if all paths from s satisfy f

Path formulas have their meaning (truth value) defined over a path.

Notations:

M, s |= f in the model (Kripke structure) M , state s satisfies f

M, π |= f in model M , path π satisfies f

If M is fixed (given), we simply write s |= f , π |= f

πi = suffix of path π = s0s1s2 . . . starting at si : sisi+1si+2 . . .

Semantics of state formulas:
s |= p ⇔ p ∈ L(s) (state s has p as a label)
s |= A f ⇔ π |= f for all paths π from s

For path formulas, define semantics as usual by structural induction:

the semantics of a formula is given in terms of its simpler subformulas

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 10

LTL semantics: path formulas

Semantics of path formulas:
π |= p ⇔ s |= p p ∈ AP holds in path origin

π |= ¬f ⇔ π 6|= f

π |= f1 ∨ f2 ⇔ π |= f1 ∨ π |= f2
π |= f1 ∧ f2 ⇔ π |= f1 ∧ π |= f2

π |= X f ⇔ π1 |= f

f holds on the path suffix starting from state 1

π |= F f ⇔ ∃k ≥ 0 . πk |= f

there exists a suffix on which f holds (f holds in a state)

π |= G f ⇔ ∀k ≥ 0 . πk |= f

f holds on all path suffixes (f holds in all states)

π |= f1 U f2 ⇔ ∃k ≥ 0 . πk |= f2 ∧ ∀j < k . πj |= f1
f2 holds on path starting at k (for some k), f1 holds everywhere prior

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 11

The temporal logic CTL*

LTL is a linear logic: paths are viewed independently; there may be

many futures from origin, but can’t express branching at each step

⇒ not expressive enough (e.g., always possible to reach a state)

⇒ another model: computation trees (branching view)

finite unfolding of a state-transition graph starting from an initial state

-

��
��
req

�
�

�
����
��
wait

��
?

@
@

@
@R

��
��
ack�

��
��
req

?

��
��
wait

�
�

�	

@
@

@R

��
��
wait

�
�

�	

@
@

@R

��
��
ack

?

��
��
wait

�
�

�	

@
@

@R

��
��
ack

?

��
��
req

?

��
��
wait

�
�

�	

@
@

@R

��
��
ack

?

��
��
req

?

��
��
wait

�
�

�	

@
@

@R

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 12

CTL* syntax and semantics

Additional path quantifier: E there exists (a path) ∃

Two classes of formulas:

state formulas, evaluated in a state

f ::= p base case: p ∈ AP atomic proposition

| ¬f1 | f1 ∨ f2 | f1 ∧ f2 f1, f2 state formulas

| E g | A g g path formula

path formula, evaluated over a path

g ::= f base case: f is state formula

| ¬g1 | g1 ∨ g2 | g1 ∧ g2

| X g1 | F g1 | G g1 | g1U g2

(same rules as LTL, only base case more complex/expressive)

Semantics: same rules as LTL, plus:

s |= E g ⇔ there exists a path π from s with π |= g

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 13

Computation tree logic CTL

defined by Clarke & Emerson (1981)

⇒ Turing Award 2007 with J.Sifakis for model checking

Tradeoff: expressiveness of specifications vs. efficiency of checking

⇒ CTL is subset of CTL*, efficient to check, enough in many cases

CTL is a branching-time logic, like CTL*

CTL quantifies over paths starting from a state

⇒ operators X , F , G , U are immediately preceded by A sau E

⇒ syntax of path formulas simplified, directly using state formulas:

g ::= X f | F f | G f | f1 U f2 | f1 R f2

Expressiveness: LTL and CTL incomparable (neither includes the other);

both less expressive than CTL*

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 14

Relations between operators

f ∧ g ≡ ¬(¬f ∨ ¬g)

F f ≡ trueU f

G f ≡ ¬F¬f

A f ≡ ¬E¬f

⇒ Operators ¬, ∨, X , U and E suffice to express any CTL* formula.

CTL has 2 x 4 = 8 pairs of quantifier × temporal operator:

AX f ≡ ¬EX¬f

EF f ≡ E [trueU f]

AF f ≡ ¬EG¬f

AG f ≡ ¬EF¬f

A [f U g] ≡ ¬EG¬g ∧ ¬E [¬g U (¬f ∧ ¬g)]

⇒ all of them expressible using EX , EU and EG

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 15

Sample CTL formulas

• EFfinish

It is possible to get to a state in which finish = true.

• AG (send→ AFack)

Any send is eventually followed by an ack.

• AFAG stable

On any path, stable is invariant (always holds) after some point

• AG (req→ A [regUgrant])

A req stays active until a grant is issued.

• AGAF ready

On any path ready holds infinitely often.

• AGEF restart

From any state, it is possible to reach a state labeled restart.

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 16

Model checking. Problem setting

Given a Kripke structure M = (S, S0, R, L) and a temporal logic formula

f , find which states from S satisfy f : {s ∈ S | s |= f}

Def: A formula (spec.) f holds in M iff all initial states satisfy f :

M |= f
def
= ∀s0 ∈ S0 . s0 |= f

History

– independently due to Clarke & Emerson; Queille & Sifakis (1981).

– initially: 104−105 states. Now: to 10100 states (symbolic checking)

Model checking for CTL

By structural decomposition of formula f : compute truth of all sub-

formulas of f for each s ∈ S.

– initially, set l(s) = L(s) (atomic propositions true in state s)

– trivial for logical connectors ¬,∨,∧

– EX f : just label each state that has a successor labeled with f .

– to discuss: two algoritms for basic operators EU and EG

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 17

CTL model checking. The operator EU

Idea: backwards traversal from states labeled f2 as long as f1 holds

procedureCheckEU(f1, f2)

T := {s | f2 ∈ l(s)} if f2 holds in s

forall s ∈ T do l(s) := l(s) ∪ {E [f1 U f2]}; then E[f1 U f2] holds, label s

while T 6= ∅ do still have candidates for search

choose s ∈ T ;

T := T \ {s}; never consider s twice

forall s1 . R(s1, s) do for all predecessors of s

if E [f1 U f2] 6∈ l(s1) ∧ f1 ∈ l(s1) then s1 not labeled but f1 holds

l(s1) := l(s1) ∪ {E [f1 U f2]}; E[f1 U f2] also holds, label it

T := T ∪ {s1}; s1 is candidate for continuing search

Terminates since S finite and no labeled state reenters T

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 18

CTL model checking. The operator EG

Consider only states satisfying f . Traverse backwards starting from

strongly connected components (on cycles where f perpetually holds).

procedureCheckEG(f) restrict to states where f holds

S′ := {s | f ∈ l(s)};

SCC := {C | C is nontrivial SCC of S′}; at least one edge

T := ∪C∈SCC{s | s ∈ C}; all states in SCCs are on cycles

forall s ∈ T do l(s) := l(s) ∪ {EG f}; thus get labeled

while T 6= ∅ do still have candidates for backwards search

choose s ∈ T ;

T := T \ {s}; continue from s only once

forall s1 . s1 ∈ S′ ∧R(s1, s) do for all predecessors of s

if EG f 6∈ l(s1) then if s1 not yet labeled

l(s1) := l(s1) ∪ {EG f}; label s1

T := T ∪ {s1}; s1 is candidate for continuing search

Terminates; will reach at most every state in S′

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 19

Fairness

In practice, we check systems subject to “reasonable” assumptions as:

– a request is not ignored forever (by a scheduler/arbiter)

– communication channels do not continually fail (thus, a message

being retransmitted is eventually delivered)

These are properties expressible in CTL*, but not CTL.

⇒ need to extend CTL (semantics) with fairness constraints

Intuitively: decision fairness = if a decision (several transitions from a

state) is repeated infinitely often, each branch is eventually taken

Reformulate: each destination state of the decision is eventually reached

Formally: A fairness constraint is a formula in temporal logic.

A path is fair iff the constraint is infinitely often true along the path.

II LTL, we would write: FG assumption ⇒ conclusion

In particular: fairness constraint expressed as set of states

⇒ a fair path passes infinitely often through the set

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 20

Model checking CTL with fairness

Augment the Kripke structure M = (S, S0, R, L, F), with F ⊆ P(S)

(F = set of subsets of states, {P1, · · · , Pn}, Pi ⊆ S)

inf(π)
def
= {s | s = si for infinitely many i}

(set of states appearing infinitely often on π)

π is a fair path ⇔ ∀P ∈ F . inf(π) ∩ P 6= ∅.

(π passes infinitely often through each set from F)

For |=F , (“holds fairly”) replace “path” with “fair path” in semantics

For model checking, define new atomic proposition fair :

fair ∈ L(s) ⇔ M, s |=F EG true

⇒ fair-CTL model checking reduces to CTL for AP ∪ {fair}

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 21

Complexity of model checking algorithms

– CTL model checking: O(|f | · (|S|+ |R|))

(linear in size of model and formula)

– CTL with fairness: O(|f | · (|S|+ |R|) · |F |)

– LTL: PSPACE-complete |M | · 2O(|f |)

(different type of algorithm, based on a tableau construction)

– CTL*: like LTL |M | · 2O(|f |)

CTL: usually preferred, because of polynomial (linear!) algorithm

Spin uses LTL: exponential only in size of formula (usually small)

Formal Verification. Lecture 2 Marius Minea

Formal Verification. Temporal Logic. Model Checking Basics 22

Synchronous and asynchronous composition

Behavior of composed systems emerges from component behavior.

For concurrently executing components: parallel composition:

• synchronous: conjunction (simultaneous transitions)

R(V, V ′) = R1(V1, V ′1) ∧R2(V2, V ′2) V = V1 ∪ V2

• asynchronous: disjunction (individual transitions)

R(V, V ′) = R1(V1, V ′1) ∧ Eq(V \ V1) ∨R2(V2, V ′2) ∧ Eq(V \ V2)

Eq(U) =
∧

v∈U(v = v′)

– arbitrary interleaving between transitions of components

– a transition modifies just the variables of one component

– simultaneous transitions are deemed impossible

Formal Verification. Lecture 2 Marius Minea

