Overview

- Abstract Interpretation
- What is it, intuitively?
- Relationship to dataflow analysis
- Value ranges
- Fixpoints and infinite lattices
- Dataflow problems with infinite lattices
- Widening
- Narrowing
- Two approaches to generating correct analyses
- Representation functions
- Correctness relations

Abstract Interpretation: Intuitively

- "Execute" the program on an abstract program state - Just like writing an interpreter, but...
- Abstract program state represents all possible program states at a particular program point
- Covers all possible program inputs
- What to do for multiple incoming control-flow edges? Join!
- What to do for program loops? Iterate!

Relationship to Dataflow Analysis

- Abstract interpretation is a dataflow analysis
- A different way to construct correct analyses
- Induces a specific ordering on the "worklist"
- Abstract program states are typically complete lattices
- Trivial join lattice for any domain V with values $v_{1}, v_{2}, \cdots, v_{n} \in V$ implies an abstract interpretation.

- Will permit lattices with infinite height
- Can combine multiple analyses into a single lattice
- Trivial example: constant propagation

Generating Analyses

- Start with the values in domain V you are interested in. Example: The integers $\mathbb{Z}=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}$.
- Next, consider the operations that can be performed on values in V, e.g., $+,-, *, /$. For $v_{1}, v_{2} \in V$ we say that $v_{1} \rightsquigarrow v_{2}$ if the value v_{1} can be transformed to v_{2}.
- Determine the form of the elements in the lattice L.
- Construct the operations performed on the elements of the lattice L. For $l_{1}, l_{2} \in V$ we say that $l_{1} \triangleright l_{2}$ if the lattice element l_{1} can be transformed to l_{2}.

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does \triangleright involve?

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does \triangleright involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does \triangleright involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.
- For negation, the following hold:

$$
-(T) \triangleright T \quad-(\perp) \triangleright \perp \quad-(c) \triangleright-c
$$

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does \triangleright involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.
- For negation, the following hold:

$$
-(T) \triangleright \top \quad-(\perp) \triangleright \perp \quad-(c) \triangleright-c
$$

- Binary operations will have, e.g., $l_{1} \times l_{2} \triangleright l_{3}$.

Back to Reality: Constant Propagation

- What does the \rightsquigarrow for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does \triangleright involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.
- For negation, the following hold:

$$
-(T) \triangleright \top \quad-(\perp) \triangleright \perp \quad-(c) \triangleright-c
$$

- Binary operations will have, e.g., $l_{1} \times l_{2} \triangleright l_{3}$.
- What would + look like?

Value Ranges

- Constant propagation is boring: we can do better.
- Definition: A value range, denoted $[a: b]$, represents all values x such that:

$$
a \in \mathbb{Z} \cup\{-\infty\} \quad b \in \mathbb{Z} \cup\{\infty\} \quad a \leq x \leq b
$$

- Examples:
- [17:17] represents the value 17 .
- [17:42] represents any value between 17 and 42 .
- $[-\infty:-1]$ represents any negative integer.
- $[0: \infty]$ represents any non-negative integer.
- Is this representation more or less expressive than in constant propagation?

Value Range Lattice

- To define a lattice, we need:

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.
- Definition: $\left[a_{1}: b_{1}\right] \sqsubseteq\left[a_{2}: b_{2}\right]$ when $a_{1} \geq a_{2} \wedge b_{1} \leq b_{2}$.

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.
- Definition: $\left[a_{1}: b_{1}\right] \sqsubseteq\left[a_{2}: b_{2}\right]$ when $a_{1} \geq a_{2} \wedge b_{1} \leq b_{2}$.
- $\mathrm{T}=[-\infty: \infty]$. Why?

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.
- Definition: $\left[a_{1}: b_{1}\right] \sqsubseteq\left[a_{2}: b_{2}\right]$ when $a_{1} \geq a_{2} \wedge b_{1} \leq b_{2}$.
- $T=[-\infty: \infty]$. Why?
- What does \perp mean? Denote it by $\perp=[\infty:-\infty]$.

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.
- Definition: $\left[a_{1}: b_{1}\right] \sqsubseteq\left[a_{2}: b_{2}\right]$ when $a_{1} \geq a_{2} \wedge b_{1} \leq b_{2}$.
- $\mathrm{T}=[-\infty: \infty]$. Why?
- What does \perp mean? Denote it by $\perp=[\infty:-\infty]$.
- Definition: $\left[a_{1}: b_{1}\right] \sqcup\left[a_{2}: b_{2}\right]=\left[\min \left(a_{1}, a_{2}\right): \max \left(b_{1}, b_{2}\right)\right]$

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.
- Definition: $\left[a_{1}: b_{1}\right] \sqsubseteq\left[a_{2}: b_{2}\right]$ when $a_{1} \geq a_{2} \wedge b_{1} \leq b_{2}$.
- $\mathrm{T}=[-\infty: \infty]$. Why?
- What does \perp mean? Denote it by $\perp=[\infty:-\infty]$.
- Definition: $\left[a_{1}: b_{1}\right] \sqcup\left[a_{2}: b_{2}\right]=\left[\min \left(a_{1}, a_{2}\right): \max \left(b_{1}, b_{2}\right)\right]$
- Definition: $\left[a_{1}: b_{1}\right] \sqcap\left[a_{2}: b_{2}\right]=\left[\max \left(a_{1}, a_{2}\right): \min \left(b_{1}, b_{2}\right)\right]$

Value Range Lattice

- To define a lattice, we need:
- A partial ordering relation \sqsubseteq.
- A join operator \sqcup.
- A meet operator \sqcap.
- Definition: $\left[a_{1}: b_{1}\right] \sqsubseteq\left[a_{2}: b_{2}\right]$ when $a_{1} \geq a_{2} \wedge b_{1} \leq b_{2}$.
- $\mathrm{T}=[-\infty: \infty]$. Why?
- What does \perp mean? Denote it by $\perp=[\infty:-\infty]$.
- Definition: $\left[a_{1}: b_{1}\right] \sqcup\left[a_{2}: b_{2}\right]=\left[\min \left(a_{1}, a_{2}\right): \max \left(b_{1}, b_{2}\right)\right]$
- Definition: $\left[a_{1}: b_{1}\right] \sqcap\left[a_{2}: b_{2}\right]=\left[\max \left(a_{1}, a_{2}\right): \min \left(b_{1}, b_{2}\right)\right]$
- How wide is this lattice? How high?

Value Range Lattice: Graphically

Value Range Operations

- Negation: $-[a: b] \triangleright[-b:-a]$.
- Addition: $\left[a_{1}: b_{1}\right]+\left[a_{2}: b_{2}\right] \triangleright\left[a_{1}+a_{2}: b_{1}+b_{2}\right]$
- Subtraction: $\left[a_{1}: b_{1}\right]-\left[a_{2}: b_{2}\right] \triangleright\left[a_{1}-b_{2}: b_{1}-a_{2}\right]$
- Multiplication: $\left[a_{1}: b_{1}\right] \cdot\left[a_{2}: b_{2}\right] \triangleright$ $\left[\min \left(a_{1} a_{2}, a_{1} b_{2}, b_{1} a_{2}, b_{1} b_{2}\right): \max \left(a_{1} a_{2}, a_{1} b_{2}, b_{1} a_{2}, b_{1} b_{2}\right)\right]$
- Key points to revisit later:
- We know how to map from elements (integers) in V to elements (value ranges) in L.
- We can prove that the operations on elements of V are "abstracted" by the operations on elements on L. Important relationship between \rightsquigarrow and \triangleright.
- But now, let's try some abstract interpretation...

Abstract Interpretation Example

- Example: Try it with constant propagation lattice.
- Not much of an improvement.
- Example: Try it with value range lattice.
- Start at entry node.

Abstract Interpretation Example

- Example: Try it with constant propagation lattice.
- Not much of an improvement.
- Example: Try it with value range lattice.
- Start at entry node.
- Apply \sqcup at control-flow joins

Abstract Interpretation Example

- Example: Try it with constant propagation lattice.
- Not much of an improvement.
- Example: Try it with value range lattice.
- Start at entry node.
- Apply \sqcup at control-flow joins
- Apply \triangleright for each operation.

Abstract Interpretation Example

- Example: Try it with constant propagation lattice.
- Not much of an improvement.
- Example: Try it with value range lattice.
- Start at entry node.
- Apply \sqcup at control-flow joins
- Apply \triangleright for each operation.
- Note: Introducing < into \triangleright improves analysis.

Abstract Interpretation Example

- Example: Try it with constant propagation lattice.
- Not much of an improvement.
- Example: Try it with value range lattice.
- Start at entry node.
- Apply \sqcup at control-flow joins
- Apply \triangleright for each operation.
- Note: Introducing < into \triangleright improves analysis.

Analyzing Loops

- What do we do at node 2? Join with \perp (as in dataflow analysis).

Analyzing Loops

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4 ? Iterate around this loop until it stabilizes.

Analyzing Loops

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4 ? Iterate around this loop until it stabilizes.
- Does it every stabilize?

Analyzing Loops

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4 ? Iterate around this loop until it stabilizes.
- Does it every stabilize?
- Need to introduce widening: jumps values closer to T on back edges.

Analyzing Loops

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4 ? Iterate around this loop until it stabilizes.
- Does it every stabilize?
- Need to introduce widening: jumps values closer to T on back edges.

Widening

- Widening reduces the number of iterations around a loop to a finite quantity, even in an infinite lattice.
- Formally, $\nabla: L \times L \rightarrow L$ is a widening operator iff:
- It is an upper bound operator, such that

$$
\forall l_{1}, l_{2} \in V \quad l_{1} \sqsubseteq\left(l_{1} \nabla l_{2}\right) \sqsupseteq l_{2} .
$$

- For all ascending chains of lattice elements l_{1}, l_{2}, \cdots, the ascending chain $l_{1} \nabla l_{2} \nabla l_{3} \nabla \cdots$ stabilizes.
- Widening operator for value ranges:

$$
\begin{gathered}
{\left[a_{1}: b_{1}\right] \nabla\left[a_{2}: b_{2}\right]=\left[L B\left(a_{1}, a_{2}\right): U B\left(b_{1}, b_{2}\right)\right]} \\
L B\left(a_{1}, a_{2}\right)=\left\{\begin{array}{ll}
a_{1} & \text { if } a_{1} \leq a_{2} \\
-\infty & \text { otherwise }
\end{array} \quad U B\left(b_{1}, b_{2}\right)= \begin{cases}b_{1} & \text { if } b_{1} \geq b_{2} \\
\infty & \text { otherwise }\end{cases} \right.
\end{gathered}
$$

Widening: Graphically

Applying Widening Operators

- Apply $l_{1} \nabla l_{2}$ on back edges. l_{1} is the previous value (at the head of the edge) and l_{2} is the new value (at the tail of the edge).
- Now we get a fixed point even with our infinite lattice.
- Let's look at x :

1. $[0: 0] \nabla([0: 0] \sqcup[1: 1])=[0: \infty]$.
2. $[0: \infty] \nabla([0: 0] \sqcup[1: \infty])=[0: \infty]$.

Deriving Information from Conditions

- Condition if $(x<10)$ tells us something about the value of x in the then and el se branches.
- If true, we know that $x \in[-\infty: 9]$. If false, $x \in[10: \infty]$.
- This information is in addition to what we already knew.
- Meet operation $l_{1} \sqcap l_{2}$ computes the lattice element when both l_{1} and l_{2} describe the value.
- What if the meet is \perp ?
- Example: We know that $x \in[0: \infty]$ (magically).
- On then branch, $x \in([0: \infty] \sqcap[-\infty: 9])=[0: 9]$.
- On the else branch, $x \in([0: \infty] \sqcap[10: \infty]=[10: \infty]$.

Narrowing

- Apply narrowing after widening to recover some information lost due to widening.
- $\triangle: L \times L \rightarrow L$ is a narrowing operator if:
- $\forall l_{1}, l_{2} \in L \quad l_{2} \sqsubseteq\left(l_{1} \triangle l_{2}\right) \sqsubseteq l_{1}$, and
- For all descending chains of lattice elements l_{1}, l_{2}, \cdots, the descending chain $l_{1} \triangle l_{2} \triangle l_{3} \triangle \cdots$ stabilizes.
- Narrowing operator for value ranges:

$$
\begin{aligned}
{\left[a_{1}: b_{1}\right] \Delta\left[a_{2}: b_{2}\right] } & =\left[z_{1}: z_{2}\right] \\
\text { where } z_{1} & =\text { if } a_{1}=-\infty \text { then } a_{2} \text { else } a_{1}, \\
z_{2} & =\text { if } b_{1}=\infty \text { then } b_{2} \text { else } b_{1}
\end{aligned}
$$

Narrowing: Graphically

Widening/Narrowing Example

 Stable.
3. $[0: \infty] \triangle[0: 10]=[0: 10]$. (Interpret the loop)
4. $[0: 10] \triangle([0: 0] \sqcup[1: 10])=[0: 10]$. Stable.

- Now, $x \in[0: 9]$ on then branch, $x \in$ [10: 10] on else branch!

A Better Widening Operator

- Let K be the set of integer constants in the program.
- Define ∇ as:

$$
\begin{aligned}
{\left[a_{1}: b_{1}\right] \nabla\left[a_{2}: b_{2}\right] } & =\left[L B\left(a_{1}, a_{2}\right): U B\left(b_{1}, b_{2}\right)\right] \\
L B\left(a_{1}, a_{2}\right) & = \begin{cases}a_{1} & \text { if } a_{1} \leq a_{2} \\
k & \text { if } a_{2}<a_{1} \wedge k=\max \left\{k \in K \mid k \leq a_{2}\right\} \\
-\infty & \text { if } a_{2}<a_{1} \wedge \forall k \in K: a_{2}<k\end{cases} \\
U B\left(b_{1}, b_{2}\right) & = \begin{cases}b_{1} & \text { if } b_{1} \geq b_{2} \\
k & \text { if } b_{1}<b_{2} \wedge k=\min \left\{k \in K \mid b_{2} \leq k\right\} \\
-\infty & \text { if } b_{1}<b_{2} \wedge \forall k \in K: k<b_{2}\end{cases}
\end{aligned}
$$

- Precision/efficiency tradeoff: more steps, but better results.

Generating Correct Analyses

- Have shown how we can create an analysis by abstraction:
- Abstract the value domain V with the lattice L
- Abstract all operations (collectively called \rightsquigarrow) with \triangleright.
- How do we prove that our analysis is correct?
- Representation functions
- Correctness relations
- Both methods are equivalent.

Representation Functions

- Let $\beta: V \rightarrow L$ be a function that maps any value in V to its "best" representation in L.
- Your analysis is correct if the following is true:

$$
\beta\left(v_{1}\right) \sqsubseteq l_{1} \wedge v_{1} \rightsquigarrow v_{2} \wedge l_{1} \triangleright l_{2} \Rightarrow \beta\left(v_{2}\right) \sqsubseteq l_{2}
$$

- Intuitively: If a value can be safely described by a lattice element, then any value it is transformed into can be safely described by the corresponding transformation on the lattice element.
- Can we prove this for value ranges?

Correctness relations

- Let $R: V \times L \rightarrow\{$ true, false $\}$ be a correctness relation.
- Given $v \in V, l \in L, v R l$ is true when v is described by l. $1 R[-1: 2]=$?, $7 R[17: 42]=$?
- General requirement: preservation of correctness

$$
v_{1} R l_{1} \wedge v_{1} \rightsquigarrow v_{2} \wedge l_{1} \triangleright l_{2} \Rightarrow v_{2} R l_{2}
$$

- Two more conditions for correctness when dealing with lattices:

1. Lattice preserves $R: v R l_{1} \wedge l_{1} \sqsubseteq l_{2} \Rightarrow v R l_{2}$
2. There is always a "best" approximation l for every v :

$$
\left(\forall l \in L^{\prime} \subseteq L: v R l\right) \Rightarrow v R\left(\bigcap_{L^{\prime}}\right)
$$

- Interesting consequence: $v R l_{1} \wedge v R l_{2} \Rightarrow v R\left(l_{1} \sqcap l_{2}\right)$

Combining Analyses

- We mainly talk about a lattice L for values of a single variable.
- Can take the Cartesian product of several of these lattices to handle multiple variables:
$L^{\prime}=L_{1} \times L_{2} \times \ldots \times L_{N}$.
- Variables do not need to be of the same type: L_{1} could be a value range lattice, L_{2} a boolean lattice, and L_{3} a points-to graph lattice.

Abstract Interpretation Tidbits

- You can read about Galois connections to abstract interpretation in the class text, but it will hurt.
- We've only discussed forward semantics: you can do abstract interpretation backwards, and with meet lattices (everything is dual).
- We only handled the "trivial" case of widening on back edges.
- What to do about irreducible control-flow graphs?
- So long as you pick widening edges such that every cycle contains at least one widening edge, abstract interpretation "works".
- Bourdoncle studied these chaotic iteration strategies. NP-complete problem, but with good heuristics.

Uses of Value Range Propagation

- Constant propagation, dead-code elimination, etc: can propagate constants and determine when conditions evaluate true or false.
- Array bounds analysis: detect bugs or remove checks that are known to be unnecessary.
- Bit width estimation: limit the sizes of registers when performing hardware synthesis.
- Static branch prediction: produce probabilities that particular branches will be taken.

