Overview

- Abstract Interpretation
 - What is it, intuitively?
 - Relationship to dataflow analysis
- Value ranges
- Fixpoints and infinite lattices
 - Dataflow problems with infinite lattices
 - Widening
 - Narrowing
- Two approaches to generating correct analyses
 - Representation functions
 - Correctness relations

Abstract Interpretation: Intuitively

- "Execute" the program on an abstract program state
 - Just like writing an interpreter, but...
 - Abstract program state represents all possible program states at a particular program point
 - Covers all possible program inputs
- What to do for multiple incoming control-flow edges? Join!
- What to do for program loops? Iterate!

Relationship to Dataflow Analysis

- Abstract interpretation is a dataflow analysis
 - A different way to construct *correct* analyses
 - Induces a specific ordering on the "worklist"
- Abstract program states are typically complete lattices
 - Trivial join lattice for any domain V with values $v_1, v_2, \dots, v_n \in V$ implies an abstract interpretation.

- Will permit lattices with infinite height
- Can combine multiple analyses into a single lattice
- Trivial example: constant propagation

Generating Analyses

- Start with the values in domain V you are interested in. Example: The integers $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}.$
- Next, consider the operations that can be performed on values in V, e.g., +, -, *, /. For $v_1, v_2 \in V$ we say that $v_1 \rightsquigarrow v_2$ if the value v_1 can be transformed to v_2 .
- Determine the form of the elements in the lattice L.
- Construct the operations performed on the elements of the lattice *L*. For $l_1, l_2 \in V$ we say that $l_1 \triangleright l_2$ if the lattice element l_1 can be transformed to l_2 .

What does the ~> for constant propagation involve?

- What does the ~> for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.

- What does the ~> for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does ▷ involve?

- What does the ~> for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does ▷ involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.

- What does the ~> for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does ▷ involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.
- For negation, the following hold:

$$-(\top) \vartriangleright \top \qquad -(\bot) \vartriangleright \bot \qquad -(c) \vartriangleright -c$$

- What does the ~> for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does ▷ involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.
- For negation, the following hold:

 $-(\top) \vartriangleright \top \qquad -(\bot) \vartriangleright \bot \qquad -(c) \vartriangleright -c$

• Binary operations will have, e.g., $l_1 \times l_2 > l_3$.

- What does the ~> for constant propagation involve?
- Negation, addition, subtraction, multiplication, etc., of integers.
- What then does ▷ involve?
- Negation, addition, subtraction, multiplication, etc., of elements in the lattice.
- For negation, the following hold:

 $-(\top) \vartriangleright \top \qquad -(\bot) \vartriangleright \bot \qquad -(c) \vartriangleright -c$

- Binary operations will have, e.g., $l_1 \times l_2 > l_3$.
 - What would + look like?

Value Ranges

- Constant propagation is boring: we can do better.
- Definition: A value range, denoted [a : b], represents all values x such that:

 $a \in \mathbb{Z} \cup \{-\infty\}$ $b \in \mathbb{Z} \cup \{\infty\}$ $a \le x \le b$

- Examples:
 - [17:17] represents the value 17.
 - [17:42] represents any value between 17 and 42.
 - $[-\infty:-1]$ represents any negative integer.
 - $[0:\infty]$ represents any non-negative integer.
- Is this representation more or less expressive than in constant propagation?

To define a lattice, we need:

- To define a lattice, we need:
 - A partial ordering relation \Box .

- To define a lattice, we need:
 - A partial ordering relation \Box .
 - A join operator \Box .

- To define a lattice, we need:
 - A partial ordering relation \sqsubseteq .
 - A join operator \Box .
 - A meet operator □.

- To define a lattice, we need:
 - A partial ordering relation \Box .
 - A join operator \Box .
 - A meet operator □.

Definition: $[a_1:b_1] \sqsubseteq [a_2:b_2]$ when $a_1 \ge a_2 \land b_1 \le b_2$.

- To define a lattice, we need:
 - A partial ordering relation \sqsubseteq .
 - A join operator \Box .
 - A meet operator □.
- **Definition:** $[a_1:b_1] \sqsubseteq [a_2:b_2]$ when $a_1 \ge a_2 \land b_1 \le b_2$.

• $\top = [-\infty : \infty]$. Why?

- To define a lattice, we need:
 - A partial ordering relation \sqsubseteq .
 - ▲ join operator □.
 - A meet operator □.
- **Definition**: $[a_1:b_1] \sqsubseteq [a_2:b_2]$ when $a_1 \ge a_2 \land b_1 \le b_2$.
- $\top = [-\infty : \infty]$. Why?
- What does \perp mean? Denote it by $\perp = [\infty : -\infty]$.

- To define a lattice, we need:
 - A partial ordering relation \sqsubseteq .
 - A join operator \Box .
 - A meet operator □.
- **Definition**: $[a_1:b_1] \sqsubseteq [a_2:b_2]$ when $a_1 \ge a_2 \land b_1 \le b_2$.
- $\top = [-\infty : \infty]$. Why?
- What does \perp mean? Denote it by $\perp = [\infty : -\infty]$.
- **Definition**: $[a_1:b_1] \sqcup [a_2:b_2] = [\min(a_1,a_2):\max(b_1,b_2)]$

- To define a lattice, we need:
 - A partial ordering relation \sqsubseteq .
 - A join operator \Box .
 - A meet operator □.
- **Definition**: $[a_1:b_1] \sqsubseteq [a_2:b_2]$ when $a_1 \ge a_2 \land b_1 \le b_2$.
- $\top = [-\infty : \infty]$. Why?
- What does \perp mean? Denote it by $\perp = [\infty : -\infty]$.
- **Definition**: $[a_1:b_1] \sqcup [a_2:b_2] = [\min(a_1,a_2):\max(b_1,b_2)]$
- **Definition**: $[a_1:b_1] \sqcap [a_2:b_2] = [\max(a_1,a_2):\min(b_1,b_2)]$

- To define a lattice, we need:
 - A partial ordering relation \sqsubseteq .
 - A join operator \Box .
 - A meet operator □.
- **Definition**: $[a_1:b_1] \sqsubseteq [a_2:b_2]$ when $a_1 \ge a_2 \land b_1 \le b_2$.
- $\top = [-\infty : \infty]$. Why?
- What does \perp mean? Denote it by $\perp = [\infty : -\infty]$.
- **Definition:** $[a_1:b_1] \sqcup [a_2:b_2] = [\min(a_1,a_2):\max(b_1,b_2)]$
- **Definition:** $[a_1:b_1] \sqcap [a_2:b_2] = [\max(a_1,a_2):\min(b_1,b_2)]$
- How wide is this lattice? How high?

Value Range Lattice: Graphically

Value Range Operations

- Negation: $-[a:b] \triangleright [-b:-a]$.
- Addition: $[a_1:b_1] + [a_2:b_2] \triangleright [a_1 + a_2:b_1 + b_2]$
- Subtraction: $[a_1:b_1] [a_2:b_2] \triangleright [a_1 b_2:b_1 a_2]$
- Multiplication: $[a_1 : b_1] \cdot [a_2 : b_2] \triangleright$ $[\min(a_1a_2, a_1b_2, b_1a_2, b_1b_2) : \max(a_1a_2, a_1b_2, b_1a_2, b_1b_2)]$
- Key points to revisit later:
 - We know how to map from elements (integers) in V to elements (value ranges) in L.
 - We can prove that the operations on elements of V are "abstracted" by the operations on elements on L.
 Important relationship between → and ▷.
- But now, let's try some abstract interpretation...

- Example: Try it with constant propagation lattice.
 - Not much of an improvement.
- Example: Try it with value range lattice.
 - Start at entry node.

- Example: Try it with constant propagation lattice.
 - Not much of an improvement.
 - Example: Try it with value range lattice.
 - Start at entry node.
 - ▲ Apply □ at control-flow joins

- Example: Try it with constant propagation lattice.
 - Not much of an improvement.
 - Example: Try it with value range lattice.
 - Start at entry node.
 - ▲ Apply □ at control-flow joins
 - Apply \triangleright for each operation.

- Example: Try it with constant propagation lattice.
 - Not much of an improvement.
- Example: Try it with value range lattice.
 - Start at entry node.
 - ▲ Apply □ at control-flow joins
 - ▲ Apply ▷ for each operation.
 - Note: Introducing < into > improves analysis.

- Example: Try it with constant propagation lattice.
 - Not much of an improvement.
- Example: Try it with value range lattice.
 - Start at entry node.
 - ▲ Apply □ at control-flow joins
 - ▲ Apply ▷ for each operation.
 - Note: Introducing < into > improves analysis.

• What do we do at node 2? Join with \perp (as in dataflow analysis).

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4? Iterate around this loop until it stabilizes.

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4? Iterate around this loop until it stabilizes.
 - Does it every stabilize?

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4? Iterate around this loop until it stabilizes.
- Does it every stabilize?
- Need to introduce widening: jumps values closer to ⊤ on back edges.

- What do we do at node 2? Join with \perp (as in dataflow analysis).
- What do we do at the back edge from 2 to 4? Iterate around this loop until it stabilizes.
- Does it every stabilize?
- Need to introduce widening: jumps values closer to ⊤ on back edges.

Widening

- Widening reduces the number of iterations around a loop to a finite quantity, even in an infinite lattice.
- ▶ Formally, $\nabla : L \times L \rightarrow L$ is a widening operator iff:
 - It is an upper bound operator, such that $\forall l_1, l_2 \in V$ $l_1 \sqsubseteq (l_1 \bigtriangledown l_2) \sqsupseteq l_2$.
 - For all ascending chains of lattice elements l_1, l_2, \cdots , the ascending chain $l_1 \bigtriangledown l_2 \bigtriangledown l_3 \bigtriangledown \cdots$ stabilizes.

Widening operator for value ranges:

$$[a_1:b_1] \nabla [a_2:b_2] = [LB(a_1,a_2):UB(b_1,b_2)]$$
$$LB(a_1,a_2) = \begin{cases} a_1 & \text{if } a_1 \leq a_2 \\ -\infty & \text{otherwise} \end{cases} UB(b_1,b_2) = \begin{cases} b_1 & \text{if } b_1 \geq b_2 \\ \infty & \text{otherwise} \end{cases}$$

Widening: Graphically

Applying Widening Operators

- Apply l₁⊽l₂ on back edges. l₁ is the previous value (at the head of the edge) and l₂ is the new value (at the tail of the edge).
- Now we get a fixed point even with our infinite lattice.
- Let's look at x:
 - **1.** $[0:0] \bigtriangledown ([0:0] \sqcup [1:1]) = [0:\infty].$
 - **2.** $[0:\infty] \nabla ([0:0] \sqcup [1:\infty]) = [0:\infty].$

Deriving Information from Conditions

- Condition if (x < 10) tells us something about the value of x in the then and else branches.</p>
- If true, we know that $x \in [-\infty : 9]$. If false, $x \in [10 : \infty]$.
- This information is in addition to what we already knew.
 - Meet operation $l_1 \sqcap l_2$ computes the lattice element when both l_1 and l_2 describe the value.
 - What if the meet is \perp ?
- Example: We know that $x \in [0 : \infty]$ (magically).
 - On then branch, $x \in ([0:\infty] \sqcap [-\infty:9]) = [0:9]$.
 - On the else branch, $x \in ([0:\infty] \sqcap [10:\infty] = [10:\infty]$.

Narrowing

- Apply narrowing after widening to recover some information lost due to widening.
- $\triangle : L \times L \rightarrow L$ is a *narrowing* operator if:
 - $\forall l_1, l_2 \in L$ $l_2 \sqsubseteq (l_1 \triangle l_2) \sqsubseteq l_1$, and
 - For all descending chains of lattice elements l_1, l_2, \cdots , the descending chain $l_1 \triangle l_2 \triangle l_3 \triangle \cdots$ stabilizes.
- Narrowing operator for value ranges:

$$[a_1:b_1] \triangle [a_2:b_2] = [z_1:z_2]$$

where $z_1 = \text{if } a_1 = -\infty$ then a_2 else a_1 ,
 $z_2 = \text{if } b_1 = \infty$ then b_2 else b_1

Narrowing: Graphically

Widening/Narrowing Example

- $K = \{0, 1, 2, 5, 10\}$
- Let's look at x again:
 - **1.** $[0:0] \bigtriangledown ([0:0] \sqcup [1:1]) = [0:\infty].$
 - **2.** $[0:\infty] \bigtriangledown ([0:0] \sqcup [1:10]) = [0:\infty].$ Stable.
 - 3. $[0:\infty] \triangle [0:10] = [0:10]$. (Interpret the loop)
 - **4.** $[0:10] \triangle ([0:0] \sqcup [1:10]) = [0:10]$. *Stable.*
- Now, $x \in [0:9]$ on then branch, $x \in [10:10]$ on else branch!

A Better Widening Operator

Let K be the set of integer constants in the program.
 Define

 as:

$$[a_{1}:b_{1}]\nabla[a_{2}:b_{2}] = [LB(a_{1},a_{2}):UB(b_{1},b_{2})]$$

$$LB(a_{1},a_{2}) = \begin{cases} a_{1} & \text{if } a_{1} \leq a_{2} \\ k & \text{if } a_{2} < a_{1} \wedge k = \max\{k \in K | k \leq a_{2}\} \\ -\infty & \text{if } a_{2} < a_{1} \wedge \forall k \in K : a_{2} < k \end{cases}$$

$$UB(b_{1},b_{2}) = \begin{cases} b_{1} & \text{if } b_{1} \geq b_{2} \\ k & \text{if } b_{1} < b_{2} \wedge k = \min\{k \in K | b_{2} \leq k\} \\ -\infty & \text{if } b_{1} < b_{2} \wedge \forall k \in K : k < b_{2} \end{cases}$$

Precision/efficiency tradeoff: more steps, but better results.

Generating Correct Analyses

- Have shown how we can create an analysis by abstraction:
 - Abstract the value domain V with the lattice L
 - Abstract all operations (collectively called \rightsquigarrow) with \triangleright .
- How do we prove that our analysis is correct?
 - Representation functions
 - Correctness relations
- Both methods are equivalent.

Representation Functions

- Let $\beta: V \to L$ be a function that maps any value in V to its "best" representation in L.
- Your analysis is correct if the following is true:

 $\beta(v_1) \sqsubseteq l_1 \land v_1 \rightsquigarrow v_2 \land l_1 \rhd l_2 \Rightarrow \beta(v_2) \sqsubseteq l_2$

- Intuitively: If a value can be safely described by a lattice element, then any value it is transformed into can be safely described by the corresponding transformation on the lattice element.
- Can we prove this for value ranges?

Correctness relations

- ▶ Let $R: V \times L \rightarrow \{$ true, false $\}$ be a *correctness* relation.
- Given $v \in V, l \in L, v R l$ is true when v is described by l. 1R[-1:2] =?, 7R[17:42] =?
- General requirement: preservation of correctness

 $v_1 \ R \ l_1 \land v_1 \rightsquigarrow v_2 \land l_1 \vartriangleright l_2 \Rightarrow v_2 \ R \ l_2$

- Two more conditions for correctness when dealing with lattices:
 - **1.** Lattice preserves R: $v \ R \ l_1 \land l_1 \sqsubseteq l_2 \Rightarrow v \ R \ l_2$
 - 2. There is always a "best" approximation *l* for every *v*: $(\forall l \in L' \subseteq L : v \ R \ l) \Rightarrow vR(\prod L')$
- Interesting consequence: $v \ R \ l_1 \land v \ R \ l_2 \Rightarrow v R(l_1 \sqcap l_2)$

Combining Analyses

- We mainly talk about a lattice L for values of a single variable.
- Can take the Cartesian product of several of these lattices to handle multiple variables: $L' = L_1 \times L_2 \times ... \times L_N$.
- Variables do not need to be of the same type: L_1 could be a value range lattice, L_2 a boolean lattice, and L_3 a points-to graph lattice.

Abstract Interpretation Tidbits

- You can read about Galois connections to abstract interpretation in the class text, but it will hurt.
- We've only discussed forward semantics: you can do abstract interpretation backwards, and with meet lattices (everything is dual).
- We only handled the "trivial" case of widening on back edges.
 - What to do about irreducible control-flow graphs?
 - So long as you pick widening edges such that every cycle contains at least one widening edge, abstract interpretation "works".
 - Bourdoncle studied these *chaotic* iteration strategies. NP-complete problem, but with good heuristics.

Uses of Value Range Propagation

- Constant propagation, dead-code elimination, etc: can propagate constants and determine when conditions evaluate true or false.
- Array bounds analysis: detect bugs or remove checks that are known to be unnecessary.
- Bit width estimation: limit the sizes of registers when performing hardware synthesis.
- Static branch prediction: produce probabilities that particular branches will be taken.