
Overview

Abstract Interpretation
What is it, intuitively?
Relationship to dataflow analysis

Value ranges

Fixpoints and infinite lattices
Dataflow problems with infinite lattices
Widening
Narrowing

Two approaches to generating correct analyses
Representation functions
Correctness relations

. – p.1/25

Abstract Interpretation: Intuitively

“Execute” the program on an abstract program state
Just like writing an interpreter, but...
Abstract program state represents all possible
program states at a particular program point
Covers all possible program inputs

What to do for multiple incoming control-flow edges?
Join!

What to do for program loops? Iterate!

. – p.2/25

Relationship to Dataflow Analysis

Abstract interpretation is a dataflow analysis
A different way to construct correct analyses
Induces a specific ordering on the “worklist”

Abstract program states are typically complete lattices
Trivial join lattice for any domain V with values
v1, v2, · · · , vn ∈ V implies an abstract interpretation.

>
mmmmmmm

yy
y JJ

JJ

TTTTTTTTTT

v1

QQQQQQQ v2
EE

E
· · · vn−1

tt
tt

vn

jjjjjjjjjj

⊥

Will permit lattices with infinite height
Can combine multiple analyses into a single lattice

Trivial example: constant propagation

. – p.3/25

Generating Analyses

Start with the values in domain V you are interested in.
Example: The integers
Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

Next, consider the operations that can be performed on
values in V , e.g., +, −, ∗, /. For v1, v2 ∈ V we say that
v1 v2 if the value v1 can be transformed to v2.

Determine the form of the elements in the lattice L.

Construct the operations performed on the elements of
the lattice L. For l1, l2 ∈ V we say that l1 B l2 if the
lattice element l1 can be transformed to l2.

. – p.4/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.
What would + look like?

. – p.5/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.
What would + look like?

. – p.5/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.
What would + look like?

. – p.5/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.
What would + look like?

. – p.5/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.
What would + look like?

. – p.5/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.

What would + look like?

. – p.5/25

Back to Reality: Constant Propagation

What does the for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
integers.

What then does B involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

−(>) B > − (⊥) B ⊥ − (c) B −c

Binary operations will have, e.g., l1 × l2 B l3.
What would + look like?

. – p.5/25

Value Ranges

Constant propagation is boring: we can do better.

Definition: A value range, denoted [a : b], represents all
values x such that:

a ∈ Z ∪ {−∞} b ∈ Z ∪ {∞} a ≤ x ≤ b

Examples:
[17 : 17] represents the value 17.
[17 : 42] represents any value between 17 and 42.
[−∞ : −1] represents any negative integer.
[0 : ∞] represents any non-negative integer.

Is this representation more or less expressive than in
constant propagation?

. – p.6/25

Value Range Lattice

To define a lattice, we need:

A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.

A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.

A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice

To define a lattice, we need:
A partial ordering relation v.
A join operator t.
A meet operator u.

Definition: [a1 : b1] v [a2 : b2] when a1 ≥ a2 ∧ b1 ≤ b2.

> = [−∞ : ∞]. Why?

What does ⊥ mean? Denote it by ⊥ = [∞ : −∞].

Definition: [a1 : b1] t [a2 : b2] = [min(a1, a2) : max(b1, b2)]

Definition: [a1 : b1] u [a2 : b2] = [max(a1, a2) : min(b1, b2)]

How wide is this lattice? How high?

. – p.7/25

Value Range Lattice: Graphically

[-∞:∞]

[-∞:1] [-1:∞]

[-∞:0]

tt

[-2:2] [0:∞]

II

[-∞:-1]
tt

[-2:1]
ttt

[-1:2]

JJJ

[1:∞]

II

[-2:0]
ww

[-1:1]

JJJ ttt
[0:2]

EE

[-2:-1]
uu

[-1:0]

GG ttt
[0:1]

JJJ yy

[1:2]

HH

[-2:-2]
tt

[-1:-1]

II ww

[0:0]

JJJ ttt
[1:1]

EE vv

[2:2]

III

⊥

ZZZZZZZZZZZZZZZZZZ

UUUUUUUU

jjjjjjjj

dddddddddddddddddd

(Marvel at it. It took me forever to get right.)

. – p.8/25

Value Range Operations

Negation: −[a : b] B [−b : −a].

Addition: [a1 : b1] + [a2 : b2] B [a1 + a2 : b1 + b2]

Subtraction: [a1 : b1] − [a2 : b2] B [a1 − b2 : b1 − a2]

Multiplication: [a1 : b1] · [a2 : b2] B
[min(a1a2, a1b2, b1a2, b1b2) : max(a1a2, a1b2, b1a2, b1b2)]

Key points to revisit later:
We know how to map from elements (integers) in V
to elements (value ranges) in L.
We can prove that the operations on elements of V
are “abstracted” by the operations on elements on L.
Important relationship between and B.

But now, let’s try some abstract interpretation...

. – p.9/25

Abstract Interpretation Example

1. y=2

2. if (...)

3. x=17 4. x=5

5. z=x+y

6. if (z < 6)

7. z=0

8. exit

Example: Try it with constant propagation
lattice.

Not much of an improvement.

Example: Try it with value range lattice.
Start at entry node.

Apply t at control-flow joins
Apply B for each operation.
Note: Introducing < into B improves
analysis.

. – p.10/25

Abstract Interpretation Example

1. y=2

2. if (...)

3. x=17 4. x=5

5. z=x+y

6. if (z < 6)

7. z=0

8. exit

Example: Try it with constant propagation
lattice.

Not much of an improvement.

Example: Try it with value range lattice.
Start at entry node.
Apply t at control-flow joins

Apply B for each operation.
Note: Introducing < into B improves
analysis.

. – p.10/25

Abstract Interpretation Example

1. y=2

2. if (...)

3. x=17 4. x=5

5. z=x+y

6. if (z < 6)

7. z=0

8. exit

Example: Try it with constant propagation
lattice.

Not much of an improvement.

Example: Try it with value range lattice.
Start at entry node.
Apply t at control-flow joins
Apply B for each operation.

Note: Introducing < into B improves
analysis.

. – p.10/25

Abstract Interpretation Example

1. y=2

2. if (...)

3. x=17 4. x=5

5. z=x+y

6. if (z < 6)

7. z=0

8. exit

Example: Try it with constant propagation
lattice.

Not much of an improvement.

Example: Try it with value range lattice.
Start at entry node.
Apply t at control-flow joins
Apply B for each operation.
Note: Introducing < into B improves
analysis.

. – p.10/25

Abstract Interpretation Example

1. y=2

2. if (...)

3. x=17 4. x=5

5. z=x+y

6. if (z < 6)

7. z=0

8. exit

Example: Try it with constant propagation
lattice.

Not much of an improvement.

Example: Try it with value range lattice.
Start at entry node.
Apply t at control-flow joins
Apply B for each operation.
Note: Introducing < into B improves
analysis.

. – p.10/25

Analyzing Loops

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

What do we do at node 2? Join
with ⊥ (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to > on back edges.

. – p.11/25

Analyzing Loops

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

What do we do at node 2? Join
with ⊥ (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to > on back edges.

. – p.11/25

Analyzing Loops

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

What do we do at node 2? Join
with ⊥ (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to > on back edges.

. – p.11/25

Analyzing Loops

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

What do we do at node 2? Join
with ⊥ (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to > on back edges.

. – p.11/25

Analyzing Loops

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

What do we do at node 2? Join
with ⊥ (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to > on back edges.

. – p.11/25

Widening

Widening reduces the number of iterations around a
loop to a finite quantity, even in an infinite lattice.

Formally, O : L × L → L is a widening operator iff:
It is an upper bound operator, such that
∀l1, l2 ∈ V l1 v (l1Ol2) w l2.
For all ascending chains of lattice elements l1, l2, · · · ,
the ascending chain l1Ol2Ol3O · · · stabilizes.

Widening operator for value ranges:

[a1 : b1]O[a2 : b2] = [LB(a1, a2) : UB(b1, b2)]

LB(a1, a2) =

{

a1 if a1 ≤ a2

−∞ otherwise
UB(b1, b2) =

{

b1 if b1 ≥ b2

∞ otherwise

. – p.12/25

Widening: Graphically

widening

least fixed point

. – p.13/25

Applying Widening Operators

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

Apply l1Ol2 on back edges. l1 is the
previous value (at the head of the
edge) and l2 is the new value (at
the tail of the edge).

Now we get a fixed point even with
our infinite lattice.

Let’s look at x:
1. [0 : 0]O([0 : 0] t [1 : 1]) = [0 : ∞].
2. [0 : ∞]O([0 : 0]t [1 : ∞]) = [0 : ∞].

. – p.14/25

Deriving Information from Conditions

Condition if (x < 10) tells us something about the
value of x in the then and else branches.

If true, we know that x ∈ [−∞ : 9]. If false, x ∈ [10 : ∞].

This information is in addition to what we already knew.
Meet operation l1 u l2 computes the lattice element
when both l1 and l2 describe the value.
What if the meet is ⊥?

Example: We know that x ∈ [0 : ∞] (magically).
On then branch, x ∈ ([0 : ∞] u [−∞ : 9]) = [0 : 9].
On the else branch, x ∈ ([0 : ∞]u [10 : ∞] = [10 : ∞].

. – p.15/25

Narrowing

Apply narrowing after widening to recover some
information lost due to widening.

4 : L × L → L is a narrowing operator if:
∀l1, l2 ∈ L l2 v (l14l2) v l1, and
For all descending chains of lattice elements
l1, l2, · · · , the descending chain l14l24l34· · ·
stabilizes.

Narrowing operator for value ranges:

[a1 : b1]4[a2 : b2] = [z1 : z2]

where z1 = if a1 = −∞ then a2 else a1,

z2 = if b1 = ∞ then b2 else b1

. – p.16/25

Narrowing: Graphically

widening

narrowing

lfp

. – p.17/25

Widening/Narrowing Example

1. x = 0;
 y = 0;

2. if (x < 10)

3. y = y + 2;

5. if (x > 5)

4. x = x + 1;

6. y = x;

7. exit

K = {0, 1, 2, 5, 10}

Let’s look at x again:
1. [0 : 0]O([0 : 0] t [1 : 1]) = [0 : ∞].
2. [0 : ∞]O([0 : 0] t [1 : 10]) = [0 : ∞].

Stable.
3. [0 : ∞]4[0 : 10] = [0 : 10]. (Interpret

the loop)
4. [0 : 10]4([0 : 0] t [1 : 10]) = [0 : 10].

Stable.

Now, x ∈ [0 : 9] on then branch, x ∈
[10 : 10] on else branch!

. – p.18/25

A Better Widening Operator

Let K be the set of integer constants in the program.

Define O as:

[a1 : b1]O[a2 : b2] = [LB(a1, a2) : UB(b1, b2)]

LB(a1, a2) =

a1 if a1 ≤ a2

k if a2 < a1 ∧ k = max{k ∈ K|k ≤ a2}

−∞ if a2 < a1 ∧ ∀k ∈ K : a2 < k

UB(b1, b2) =

b1 if b1 ≥ b2

k if b1 < b2 ∧ k = min{k ∈ K|b2 ≤ k}

−∞ if b1 < b2 ∧ ∀k ∈ K : k < b2

Precision/efficiency tradeoff: more steps, but better
results.

. – p.19/25

Generating Correct Analyses

Have shown how we can create an analysis by
abstraction:

Abstract the value domain V with the lattice L

Abstract all operations (collectively called) with B.

How do we prove that our analysis is correct?
Representation functions
Correctness relations

Both methods are equivalent.

. – p.20/25

Representation Functions

Let β : V → L be a function that maps any value in V to
its “best” representation in L.

Your analysis is correct if the following is true:

β(v1) v l1 ∧ v1 v2 ∧ l1 B l2 ⇒ β(v2) v l2

Intuitively: If a value can be safely described by a lattice
element, then any value it is transformed into can be
safely described by the corresponding transformation
on the lattice element.

Can we prove this for value ranges?

. – p.21/25

Correctness relations

Let R : V × L → {true, false} be a correctness relation.

Given v ∈ V, l ∈ L, v R l is true when v is described by l.
1R[−1 : 2] =?, 7R[17 : 42] =?

General requirement: preservation of correctness

v1 R l1 ∧ v1 v2 ∧ l1 B l2 ⇒ v2 R l2

Two more conditions for correctness when dealing with
lattices:
1. Lattice preserves R: v R l1 ∧ l1 v l2 ⇒ v R l2
2. There is always a “best” approximation l for every v:

(∀l ∈ L′ ⊆ L : v R l) ⇒ vR(L′)

Interesting consequence: v R l1 ∧ v R l2 ⇒ vR(l1 u l2)

. – p.22/25

Combining Analyses

We mainly talk about a lattice L for values of a single
variable.

Can take the Cartesian product of several of these
lattices to handle multiple variables:
L′ = L1 × L2 × ... × LN .

Variables do not need to be of the same type: L1 could
be a value range lattice, L2 a boolean lattice, and L3 a
points-to graph lattice.

. – p.23/25

Abstract Interpretation Tidbits

You can read about Galois connections to abstract
interpretation in the class text, but it will hurt.

We’ve only discussed forward semantics: you can do
abstract interpretation backwards, and with meet
lattices (everything is dual).

We only handled the “trivial” case of widening on back
edges.

What to do about irreducible control-flow graphs?
So long as you pick widening edges such that every
cycle contains at least one widening edge, abstract
interpretation “works”.
Bourdoncle studied these chaotic iteration
strategies. NP-complete problem, but with good
heuristics.

. – p.24/25

Uses of Value Range Propagation

Constant propagation, dead-code elimination, etc: can
propagate constants and determine when conditions
evaluate true or false.

Array bounds analysis: detect bugs or remove checks
that are known to be unnecessary.

Bit width estimation: limit the sizes of registers when
performing hardware synthesis.

Static branch prediction: produce probabilities that
particular branches will be taken.

. – p.25/25

	Overview
	Abstract Interpretation: Intuitively
	Relationship to Dataflow Analysis
	Generating Analyses
	Back to Reality: Constant Propagation
	Value Ranges
	Value Range Lattice
	Value Range Lattice: Graphically
	Value Range Operations
	Abstract Interpretation Example
	Analyzing Loops
	Widening
	Widening: Graphically
	Applying Widening Operators
	Deriving Information from Conditions
	Narrowing
	Narrowing: Graphically
	Widening/Narrowing Example
	A Better Widening Operator
	Generating Correct Analyses
	Representation Functions
	Correctness relations
	Combining Analyses
	Abstract Interpretation Tidbits
	Uses of Value Range Propagation

