
Verification of security protocols

January 19, 2006

– models of security protocols

– typical examples of protocols and attacks

– modeling in BAN logic

– verification methods

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 2

Security Protocols and their Importance

Need for secret communication dates back to antiquity

likewise the discovery of ciphers and beginnings of cryptography

Security involves multiple aspects:

authentification, authorization, integrity, confidentiality, nonrepudia-

tion.

Solutions are complex and reasoning them about them difficult.

Security of a protocol must not depend on the secrecy of the algorithm

(no “security through obscurity”)

– Subtle errors in existing (and widely used) protocols have been dis-

covered after very long time (17 years, for Lowe’s attack on Needham-

Schroeder)

⇒ there are great risks in compromising a weak algorithm, unknown

and thus unscrutinized by specialists

⇒ importance of formal verification even greater

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 3

Symmetric and asymmetric key encryption

A fundamental problem: establishing a two-way secret communication

channel between two entities

Symmetric key encryption (secret key, shared key)

– shared key known only by the two participants

– decryption and encryption key related by a simple transform

(conventionally considered as being the same)

– examples: Data Encryption Standard (1975, outdated), Triple DES,

AES (Rijndael)

Asymmetric key encryption (public key)

– each participant A: has a pair of keys, one is inverse of the other

– publicǎ key, Ka / private key K−1
a

– A sends Kb(K−1
a (M)): only A can create, only B can decrypt

– ex. Rivest-Shamir-Adleman (1976), El-Gamal

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 4

Protocol Models

[Dolev & Yao ’83]: stressed the importance of clear assumptions in

modeling, analysis and verification of protocols:

1) In a public key encryption system:

a) encryption functions cannot be broken

b) public key directory has guaranteed identity

c) everybody has access to all public keys EX, ∀X

d) only X has access to its decryption key DX

2) A protocol between two entities does not require the assistance of

a third for encryption or decryption

3) In a uniform protocol, all communicating parties use the same mes-

sage format

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 5

Sample attacks

Protocol 1:

(1) A → B: EB(M)

(2) B → A: EA(M)

Attack 1:

(1) A → B: EB(M), intercepted by Z

(2) Z → B: EB(M)

(3) B → Z: EZ(M); Z decodes M

Protocol 2:

(1) A → B: EB(EB(M)A)

(2) B → A: EA(EA(M)B)

Attack 2:

(1) Z → A: EA(EA(EA(M)B)Z)

(2) A → Z: EZ(EZ(EA(M)B)A)

(3) Z decodes EA(M)B, obtaining EA(M)

(4) Z → A: EA(EA(M)Z)

(4) A → Z: EZ(EZ(M)A), thus Z has M

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 6

The Dolev-Yao intruder model

Intruders are “active”: they can eavesdrop on the communication,

acquiring messages and doing everything possible to decrypt them.

An intruder:

a) can obtain every message from the network

b) is a legitimate user of the system; in particular, s/he can initiate a

conversation with any user

c) will have the opportunity to receive messages from any user

(more generally: any user B can become recipient for any user A)

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 7

First formal results

Dolev & Yao discuss two types of protocols, defined by their allowed

operations:

1. Cascade protocols

– encryption with any public key

– decryption only with own key

2. Name stamp protocols. In addition:

– appending a participant’s name to a messaje

– deleting a certain participant’s name

– deleting any name

Correctness problem becomes a rewriting problem for strings over an

alphabet, decidable in polyomial time

– but undecidable for more complex problems

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 8

Authentication protocols

protocols by which participants convince each other of their identity

– and either establish shared secrets (keys) for communication

– or recognize the use of partners’ secret keys

– are the most widely studied security protocols in the literature

Notations: A, B: participants. S: authentication server

Na, Nb: “nonce” (from: number once) = random pattern (number)

generated to avoid reuse of old messages by an intruder

{X}K: message X cripted with key K

[Needham & Schroeder ’78] “Using Encryption for Authentication in

Large Networks of Computers”: classic article, the first to predict the

importance of formal verification methods

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 9

Needham-Schroeder shared key protocol

(1) A → S: A, B, Na

A announces to server S the intention to communicate with B

(and guarantees freshness of the message with a nonce Na)

(2) S → A: {Na, B, Kab, {Kab, A}Kbs
}Kas

S sends to A the key Kab, together with an encrypted message which

A will retransmit to B:

(3) A → B: {Kab, A}Kbs

B extracts the key Kab and announces A by sending a nonce Nb:

(4) B → A: {Nb}Kab

A confirms by retransmitting a message based on Nb

(conventionally, decremented by 1 to avoid replay)

(5) A → B: {Nb − 1}Kab

Now, both participants know they can communicate with Kab

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 10

Needham-Schroeder: attack # 1

[Denning & Sacco, 1981]

Problem: an intruder who eavesdropped on a previous session can force

B to accept an old key, potentially compromised

Intruder I impersonates A (denoted I(A)) and sends to B message (3)

from the earlier session, with the old key Kc:

(3) I(A) → B: {Kc, A}Kbs

(4) B → I(A): {Nb}Kc

(5) I(A) → B: {Nb − 1}Kc

Danger: I has practically unlimited time to compromise (break) Kc

Correction: timestamps or extra nonce

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 11

Needham-Schroeder: attack # 2

[Lowe ’95] finds an error in the public key version (after 17 years!)

(1) A → B: A, B, {Na, A}Kb
A asks to communicate, sends nonce Na

(2) B → A: B, A, {Na, Nb}Ka B replies with nonce Nb

(3) A → B: A, B, {Nb}Kb
A confirms reception

Attack with two concurrent sessions: A initiates session α with intruder

I; the latter impersonates A in session β with B

(α.1) A → I: A, I, {Na, A}Ki

(β.1) I(A) → B: A, B, {Na, A}Kb

(β.2) B → I(A): B, A, {Na, Nb}Ka

(α.2) I → A: I, A, {Na, Nb}Ka

(α.3) A → I: A, I, {Nb}Ki

(β.3) I(A) → B: A, B, {Nb}Kb

Discovered: with FDR model checker for CSP language

Correction: including the encrypted name of the sender in message (2)

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 12

Types of attacks

“Cryptography is not broken, it is circumvented” – A. Shamir

Clark & Jacob, “A Survey of Authentication Protocol Literature, ’97:

• freshness attacks (replay attacks)

– a message (or fragment) from an earlier communication session is

stored an inserted by the intruder in a new session

• type flaw attacks

– A message is composed of fields, each with a given interpretation

(data, nonce, participant name, key value)

– Attack based on accepting a message with another interpretation of

bit pattern than the one initially sent

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 13

Types of attacks (cont’d.)

• patallel session attacks

– two or more concurrent sessions of the same protocol

– messages from a session used to attack another

• implementation-dependent attacks

– type flaw attacks can be eliminated if the representation of message

components contains redundancy to distinguish the type

– interaction between protocol and encryption method (e.g., changing

of a bit in bitwise encryption)

• binding attacks (key integrity attacks)

– tampering with partner’s public key (replacing it with intruder’s key)

• ... and many others

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 14

Modeling in BAN logic

[Burrows, Abadi, Needham ’89: “A logic of authentication”]

– most important method for modeling using logic

– a logic of belief, as opposed to a logic of knowledge

– deals with what every participant believes is true

Goal: to express precisely

– initial assumptions about the workings of a protocol

– the final conclusions reached by the participants

Examples:

– what does the protocol achieve ?

– does it need more assumptions than another protocol ?

– does it send/encrypt something which is not necessary ?

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 15

BAN logic: basic notions

P |≡ X P believes X
P � X P sees (receives, reads) message X
P |∼ X P said (sent) X sometime in the past
P |⇒ X P has jurisdiction over X. P is an authority

on X (e.g., a key) and must be believed
](X) X is fresh (has not been sent so far)

P
K↔ Q P and Q can use shared key K to communicate

K7→ P P has public key K

P
X
⇀↽ Q X is a secret known only by P and Q

{X}K message X encrypted with key K
〈X〉Y X combined with secret Y (for identification)

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 16

BAN logic: inference rules

Rules on meaning of messages:

– for shared keys:

P |≡ Q
K↔ P , P � {X}K

P |≡ Q |∼ X

– for public keys:

P |≡K7→ Q, P � {X}K−1
P |≡ Q |∼ X

– for shared secrets:

P |≡ Q
Y
⇀↽ P , P � 〈X〉Y

P |≡ Q |∼ X

Rules on freshness of messages
P |≡](X), P |≡ Q |∼ X P |≡](X)

P |≡ Q |≡ X P |≡](X, Y)

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 17

BAN logic: inference rules (cont.)

Jurisdiction rule:

P |≡ Q |⇒ X, P |≡ Q |≡ X

P |≡ X

Composition: P believes a compound ⇔ believes the parts

Projection: P said a compound ⇒ said the parts
P |≡ X, P |≡ Y P |≡ (X, Y) P |≡ Q |∼ (X, Y)

P |≡ (X, Y) P |≡ X P |≡ Q |∼ X

Decryption rules:

P |≡K7→ Q, P � {X}K−1

P � X

Bidirectionality of keys and secrets among participants

P |≡ R
K↔ R′

P |≡ R′ K↔ R

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 18

Example: Needham-Schroeder with shared keys

(1) A → S: A, B, Na

(2) S → A: {Na, B, Kab, {Kab, A}Kbs
}Kas

(3) A → B: {Kab, A}Kbs

(4) B → A: {Nb}Kab

(5) A → B: {Nb − 1}Kab

We idealize the protocol: instead of bit messages, we send logical

formulas, corresponding to message meaning:

(1) Message 1 is only a request, has no logic value

(2) S → A: {Na, B, (A
Kab↔ B),](A

Kab↔ B), {A Kab↔ B}Kbs
}Kas

(3) A → B: {A Kab↔ B}Kbs

(4) B → A: {Nb, (A
Kab↔ B)}Kab

from B

(5) A → B: {Nb, (A
Kab↔ B)}Kab

from A

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 19Reasoning: Needham-Schroeder with shared keys

We start with the assumptions (denote P |≡ X and Q |≡ X by P, Q |≡ X):

A, S |≡ A
Kas↔ S B, S |≡ B

Kbs↔ S S |≡ A
Kab↔ B

A, B |≡ (S |⇒ A
K↔ B) A |≡ (S |⇒](A

K↔ B)) (a good key is fresh)

A |≡](Na) B |≡](Nb) S |≡](A
Kab↔ B)

From A |≡](Na), and (2) we deduce:

A |≡ S |≡ A
Kab↔ B, A |≡ S |≡](A

Kab↔ B)

and from the jurisdiction rule: A |≡ A
Kab↔ B A |≡](A

Kab↔ B)

After receiving message (3) from A, we deduce: B |≡ S |∼ A
Kab↔ B

We cannot obtain B |≡ A
Kab↔ B without the premise B |≡](A

K↔ B) (!!)

From the freshness of messages (4) and (5) we deduce: A |≡ B |≡
A

Kab↔ B and B |≡ A |≡ A
Kab↔ B, thus each participant is believes both

that the key is valid, and that the other participant knows this

Reasoning explicitates the missing premise, which allows an intruder

to substitute a compromised key.

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 20

BAN logic: applicability and limitations

– allows to prove properties about a protocol

– if property can’t be proved, there are serious reasons for doubt

– can identify dubious/missing/non-explicit premises

But:

– monotone logic: an existing fact cannot be retracted

– cannot handle the notion of key confidentiality or their being com-

promised (e.g. sending a key in plaintext)

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 21
Verification: model checking

Protocol is asynchronous composition b/w participants and intruder.

Intruder can listen to anything, and delete, change or insert messages

according to its current knowledge set.

State space is given by execution point for each participant and

knowledge set of intruder (set of terms constructed by certain rules)

Intruder is modeled by a relation ` by which the intruder can derive

messages m from an initial set of information I:

– if m ∈ I then I ` m

– concatenation: if I ` m1 and I ` m2 then I ` m1 ·m2

– projection: if I ` m1 ·m2 then I ` m1 and I ` m2

– encryption: if I ` m and I ` k then I ` {m}k

– decription: if I ` {m}k and I ` k−1 then I ` m

Model checkers: FDR (for CSP), OFMC (on-the-fly), SATMC (SAT-

based)

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 22

Verification: theory generation

Problem in model checking: representing potentially infinite state space

Theory generation (RVChecker, REVERE [Kindred&Wing] for extended

BAN logic)

– a syntactic method of saturation-based theorem proving

– produces a finite representation of a potentially infinite theory

(all theorems generated from some premises and rules)

– termination based on limiting the application of those inference rules

which can generate conclusions of larger size than premises.

Combination with model checking:

– a dubious premise found by theory generation: used for modeling an

attack

– conversely, a counterexample, modeled as logic deduction, can iden-

tify a dubious premise

Formal verification. Lecture 11 Marius Minea

Verification of security protocols 23

Verification: theorem proving

Model checking requires finite model ⇒ finite participants and sessions

Theorem provers do not have this limitation

Rewriting of reasoning in Prolog: Interrogator [Millen’87]

NRL Protocol Analyzer [Meadows et al.]

– combination of theorem-proving + model checking

– starts from an error state (should be inaccessible)

– searches backwards using inductive techniques

Athena [Song et al., CMU/Berkeley]

– representation using strand spaces based on causality and not indi-

vidual executions ⇒ reduces state space significantly

Formal verification. Lecture 11 Marius Minea

