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• Errors and their sources

• What are formal methods ?

• Techniques and applications
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Course objectives

– be able to verify correct behavior of designed systems

– detect main error types and sources

– use formal methods as an alternative to simulation and testing

– use rigor in the description of systems

– build appropriate models for the systems under design

– unambiguously express specifications for desired properties

– evaluate applicability of formal methods for a particular design

– know and be able to use several verification tools
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Famous errors: Therac-25

– medical radiation therapy machine

– 6 massive overdoses leaving several dead (1985-87, USA Canada)

– cause: errors in the control program, no hardware safety backup

Analysis [Leveson 1995]:

• excessive trust in software when designing system

• reliability 6= safety

• lack of hardware interlocks

• lack of appropriate software engineering practices (defensive design,

specification, documentation, simplicity, formal analysis, testing)

• correcting one error does not necessarily make system safer !
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Famous errors: Ariane 5 space rocket

– Self-destructed due to malfunction 40 seconds after launch (1996)

– Cause: 64-bit float → 16-bit int conversion generated uncaught

exception in its ADA program

– Cost: $500 M (rocket), $7 billion (project)

Analysis

• main cause: inappropriate software reuse

• code taken over from the Ariane 4, without judicious analyis

– execution was no longer necessary at moment of error

– no analysis of overflow for unprotected variables

⇒ necessity of specifying and observing an interface

• bad design of system fault tolerance: the inertial reference system

and the backup system affected by the same error
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Famous errors: The Pentium FDIV bug

Error in the floating point division unit (1994)

• SRT division algorithm, generates 2 quotient bits per cycle (base 4)

• uses a lookup table to determine next quotient digit

• a few entries erroneously marked as “don’t care” ⇒ wrong values

• Cost: ca. $500 million

Analysis

• Circuit could have been formally verified at that time

– by automated theorem proving [Clarke, German & Zhao]

– or with special data structures for multiplication [Bryant & Chen]

• but other more complex components were verified instead (instruc-

tion execution, cache coherence)
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Famous errors: Mars space probes

Mars Pathfinder, 1997

• Problem: on Mars, space probe was resetting frequently

• Cause:

priority inversion between processes sharing common resources

• Issue and solution were well known in literature !

[Sha, Rajkumar, Lehoczky. Priority Inheritance Protocols, 1990]

1. Process A (low priority) requests resource R

2. A interrupted by C (high priority)

3. C waits for R to be freed; switch back to A

4. A interrupted by B (medium priority, A < B < C)

⇒ C waits for lower priority B, without directly depending on it !

Solution:

raising the priority of a process (A) that obtains a resource to the

level of the highest priority process (C) that can request the resource
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Famous errors: Mars space probes

Mars Climate Orbiter, 1998

• disintegrated uppon enty to Mars atmosphere

• technical error: mismatch between anglo and metric units

• multiple process errors: lack of formal interfaces between modules

Mars Polar Lander, 1998

• landing gear prematurely activated upon entry to atmosphere

• resulting shock is interpreted as landing, engines are stopped

• error: lack of integration testing
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How can one detect errors?

Testing

+ directly on the product ⇒ tests have immediate relevance

– errors detected late are costly

– diagnosis needs complete observability

Simulation

+ can be performed through the design stage

– simulator can be significantly slower than real system

– Exhaustive testing and simulation is often impossible

Program testing can be used to show the presence of bugs, but never

to show their absence!” (E. W. Dijkstra, 1979)
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What are formal methods ?

“ ... mathematically-based languages, techniques and tools for speci-

fying and verifying [...] systems” [Clarke & Wing, 1996]

Or, in more detail: “a set of tools and notations

– with a formal semantics,

– used to unambiguously specify the requirements of a systsm

– that allow proving properties of that specification

– and proving the correctness of an implementation with respect to

that specifciation”

[Hinchey & Bowen, Applications of Formal Methods, 1995]
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What can formal methods guarantee ?

• there are no absolute guarantees

• a formal method cannot be better than the employed model and the

specifications

– model and specifications have to be validated

However, formal methods can offer:

• a logically consistent way of reasoning

• exhaustive coverage, often impossible to achieve by other means

• mechanization and automation ⇒ performance and correctness

They can complement successfully simulation, testing, etc.
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Formal methods: Necessity and difficulties

Usefulness especially in case of:

– complexity : abstraction / approximation techniques

– concurrency : difficult to reproduce and analyze otherwise

– criticality : (avionics, banking, medicine, security)

Error synamics in software development [John Rushby, SRI]

• 20-50 errors/kloc before testing → 2-4 errors/kloc after

• formal code inspection can reduce before-testing errors 10-fold !

Case study on 10kloc distributed real-time code:

• verification and validation: 52% cost (57% time)

• of this, 27% cost in inspection, 73% in testing

• 21% due to 4 defects uncovered in final testing

(one of these originated in design phase)

• error elimination in detailed code inspection: 160 times more effi-

cient than in testing !
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Error causes and costs

Errors in programs [NASA JPL (Voyager and Galileo probes)]

• majority: deficiencies in requirement and interface specification

• 1 error in 3 pages of requirements and 21 pages of code

• only 1 in 3 were programming errors

• 2/3 of functional errors: omissions in requirement specifications

• majority of interface errors: due to bad communication
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Summarizing: an overall view

• Most frequent error causes:

conceptual errors, simultaneous defects, unforeseen interactions

– main shortcomings: in timely application of formal methods

– main cost: late error removal

• Maximum potential of formal methods:

– in high-level modeling and verification

– for complex, concurrent, distributed, reactive, real-time, fault-

tolerant systems
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Formal methods in the development cycle

• Requirement analysis.

– can identify contradictions, ambiguities, omissions

• Design

– decomposing into components and specifying interfaces

– design by successive refinement

• Verification

• Testing and debugging

– model-based test case generation

• Analysis

– abstract model, less complex than real system
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Applications

Formal verification of:

• Hardware

– Combinational circuits

– Sequential circuits

• Software (generally speaking)

• Communication protocols

• Security protocols

• Real-time systems

• Concurrent and distributed systems
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Verification approaches

Two main categories:

Model checking (state space exploration)

– system is represented as a finite-state machine

– specification: reachability (no error state reached),

or more complex (temporal logic formula)

– uses exhaustive state space exploration algorithms

answer: “correct— or counterexample execution sequence

Theorem proving

– model represented in logical system with axioms and deduction rules

– application/analysis domain represented likewise (a theory)

– mechanized theorem proving: automated or manual
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Techniques

• Abstraction: most important, reduces verification complexity

• On-the-fly state space construction and state space reduction

• Symbolic state space representation

• Refinement checking

• Compositional verification

• Assume-guarantee reasoning
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Applications: Hardware design

• Verification of combinatorial equivalence

– major success, became standard in all CAD tools

• Verification of sequential designs

– large companies have dedicated research groups

(IBM, Intel, Motorola, Fujitsu, Siemens, etc.)

– use publicly available verifiers or their own in-house tools

• cache coherence protocols: Gigamax, IEEE Futurebus+

• Motorola 68020: modeled in Boyer-Moore theorem prover;

verification of binary code produces by compilers

• AAMP-5 (avionics processor): modeled in PVS theorem prover;

verification of microcode for instruction execution

• modeling/verification of DLX-type pipelined / superscalar processors
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Applications: Avionics

Lockheed C130J

– ADA code with annotations in SPARK language analyzed

– result: “correct by construction” software, reduced cost

TCAS-II (Traffic Collision Avoidance System)

• mandatory on all U.S. commercial aircraft

• implements automatic alert and course change if dangerously close

• specification expressed in a formal language (RSML)

• completeness and consistency were verified [Heimdahl, Leveson ’96]

• result: English-language description abandoned in favor of com-

pletely formal specification

Airbus A340

– Cousot et al. (1993) proved complete absence of runtime errors in

main flight control software using a static program analyzer

⇒ formal models of complex systems are feasible ⇒ can be analyzed

by experts from the application domain
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Other Applications

• Telephony. Specification and analysis of interactions between vari-

ous features of the telephone system.

• Consumer electronics. Manual and later automatic verification of a

control protocol from Philips audio components.

• Control systems in automotive electronics.

• Communication protocols (untimed and timed).

• Security protocols. Analysis using special logics to reason about

encrypted messages, intruders, etc.

• System software. Verification of device drivers.
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Formal methods: Specification

• Specification is needed in any formal method

can be the only aspect of the method (no analysis or verification)

• requires a language with formally (mathematically) defined syntax

and semantics

A specification language defines:

– a syntactic domain (the formal notation)

– a semantic domain (the universe of regarded objects)

– a precise definition of objects that satisfy a specification

[M. Chechik, Automated Verification, lecture notes, U. Toronto]
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Syntax and semantics

Syntax

– an alphabet of symbols (e.g. propositions, logical operators)

– grammar rules for creating well-formed formulas

Semantics

The semantic domain varies according to the language:

– state sequences, event sequences, traces, synchronization structures

(in specification languages for concurrent systems)

– input/output functions, relations, computations, predicate trans-

formers

(for programming languages)
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Types of specifications

• declarative (need not represent a computable function)

• executable (e.g. programming languages)

• behavioral (property-oriented) (e.g., functionality, reactivity)

– describe system behavior with respect to properties that must be

satisfied

• structural (model-oriented) (e.g. diagrams, connectors, hierarchy)

– build a model of the system using precise mathematical notions

(sets, functions, predicate logic)

Sometimes, the same language is used for specification and model

(implementation)

⇒ it is possible to do refinement with successive abstraction levels
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Properties of specifications

• unambiguous: has a well-defined meaning (NOT: language without

formal semantics, natural language, graphical schemes with several

interpretations)

• consistent (non-contradictory)

– there exists at least an object that satisfies it

• may be incomplete

– can be nondeterministic or leave behavior up to implementation

If the language has a system for logical inference, one can prove prop-

erties starting from the specification (before building a model)
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Specification: the Z language

– based on first-order logic and set theory

– functional, declarative description

– used extensively for industrial projects in the U.K.

PhoneDB

members : PPerson

telephones : Person ↔ Phone

dom phones ⊆ members

F indPhones

ΞPhoneDB

name? : Person

numbers! : PPhone

name? ∈ dom phones

numbers = phones(|{name?}|)
– a schema (PhoneDB) (states + possibly transitions),

and an invariant

– operations that change the state (∆) or don’t (Ξ)
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Specification: the Larch language

[Guttag, Hornig, Garlan, MIT/DEC SRC]:

description with 2 parts/languages

1. language-independent abstraction (specification)

2. interface specification for modules in a given language

Table: trait

includes Integer

introduces

new: -> Tab

add: Tab, Ind, Val -> Tab

lookup: Tab, Ind -> Val

asserts \forall i, i1: Ind, v: Val, t: Tab

\not (i \in new);

i \in add (t, i1, v) == i = i1 \/ i \in t

lookup(add(t, i, v), i1) ==

if i = i1 then v else lookup(t, i1)
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The Larch language (cont.)

Interface specification for the C language

mutable type table

uses Table(table for Tab, char for Ind,

char for Val, int for Int);

constant int maxTabsize;

table table_create(void) {

ensures result’ = new /\ fresh(result);

}

char table_read(table t, char i)

requires i \in t^;

ensures result = lookup(t^, i);

}

– defines preconditions and postconditions

– interface stays at abstract level (without algorithms)
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Specification other languages

VDM (Vienna Development Method

– originates from the efforts of the IBM Vienna group in the 70’s

– similar and related to Z

B

– developed by Jean-Raymond Abrial (France)

– as opposed to Z, has strong automated tool support

– preconditions / postconditions, invariants, refinement

– support for automated code generation

– industrial usage (Paris metro, Alsthom, n · 10kloc)

Interface specification notions have been directly incorporated in some

programming languages, e.g., Eiffel (design by contract)
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Modeling of concurrent systems

Two main approaches:

– traditional imperative programming + add-ons for concurrency

(semaphores, monitors, rendezvous communication, etc.)

– concurrent computation model, based on process interaction

(“indivisible interaction”)

Communication and concurrency are complementary notions [Milner]

• Communicating Sequential Processes [Hoare]

• Calculus of Communicating Systems [Milner]
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Modeling: Communicating Sequential Processes (CSP)

Example [Hoare]: chocolate vending machine with coins

Alphabet: αV = {in1p, in2p, small, large, out1p}

Behavior:

V = (in2p → (large → V |small → out1p → V )

|in1p → small → V )

or, formally:

V = µX.(in2p → (large → X|small → out1p → X)

|in1p → small → X)

(unique solution of above equation)

CSP: formalism (process algebra) centered on actions

with nondeterminism, synchronous composition, etc.
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Modeling: finite-state automata

• Variants:

– labels on states or on transitions

– transitions specified as functions or relations

– augmented or not with variables (data)

• Kripke structure:

= automaton labeled with atomic propositions from a set AP :

M = (S, S0, R, L)

– S: finite set of states

– S0: set of initial states

– R ⊆ S × S: total transition relation

– L : S → 2AP : state labeling function
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The notion of correctness

• Generally: the system satisfies a property (specification)

• Behavior is functionally correct.

– system is seen as implementing an input/output function

– example formalism: Hoare triplets

{P} S {Q}

{ precondition } program(system) { postcondition }

Sample reasoning:

{P} S1 {Q1} Q1 ⇒ Q2 {Q2} S2 {R}

{P} S1;S2 {R}
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The notion of correctness (cont.)

Temporally correct behavior

• for reactive systems: conceptually infinite execution

• behavior is defined by a reaction to an input sequence

• specification: e.g. temporal logic

• properties: absence of deadlock, time-bounded reaction, etc.

Examples:

– any request is followed by a response within at most 5 seconds

– any process obtains the resource an infinite number of times

– on any trajectory, at some point a stable state is reached
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Verification techniques

Two main categories / approaches:

State space exploration (model checking)

– specification usually given in temporal logic

– exhaustive state-space exploration algorithms verify the truth value

of the formula or produce an execution trace as counterexample

– equivalence checking: specification is also a (more abstract) model

Theorem proving

– representation in a logical system with axioms and deduction rules

– the analyzed domain is also represented by axioms and rules

(a theory)

– mechanized theorem proving: manually guided or automated
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