Model Checking Basics
October 13, 2005

e Finite state systems
e Temporal logics: CTL*, CTL, LTL
e EXplicit-state model checking

Formal verification 2 Marius Minea

Model Checking Basics 2

What kind of systems can we verify ?

— systems whose behavior can be described mathematically

— we analyze: the interaction of the system with its environment

— system state all quantities that determine its future behavior in
time

— the definition of state depends on the abstraction level in

Example for a processor: instruction set level; internal organization
(incl. pipeline, etc.); register transfer level; gate-level; transistor level

System classification:

— discrete, continuous or hybrid systems

— finite (necessarily discrete) or infinite (continuous systems, recursive
programs, programs with dynamic data structures)

Formal verification 2 Marius Minea

Model Checking Basicslvlode”ng Of finite—State SyStemS

— Finite state machines (automata): states 4 transitions
— Programs (finite): variables + program counter
There is no conceptual difference !

Let V = {vq,vp,---,vn} be a set of variables.

A state: an assignment s :V — D of values from a given domain D
for each variable v € V.

— A state (assignment) < a formula true only for that assignment:
(V1 = 7,00 «— 4,03 «— 2) (vi =7)A(v2 =4) A (v3 =2)
— A formula < the set of all assignments that make it true

e.d. v1 <bAvy >3

= Sets of states can be represented by logic formulas

— A transition s — s’: a formula over VUV’

V' = copy of V (next state formulas)

ex. (semaphore = red) A (semaphore’ = green)

— set of all transitions: transition relation = a formula R(V, V')

Formal verification 2 Marius Minea

Model Checking Basics)) . 4
Modeling with Kripke structures

Kripke structure = labeled finite-state automaton
M = (S,Sp,R, L)
— 5. finite state set
— Sp C S: set of initial states
— RC S x S: total transition relation Vs e S3s' €S . (s,s') € R
(from every state there is at least one transition)
— LS — 24P state labeling function

AP =set of atomic propositions (observations that appear in formu-
las/properties/specifications). Examples:

— a state is stable or not

— define the proposition bad ::= red_recvd > 1 (Spin project)

Path (trajectory): infinte set of states starting from sq:
T = 505152 ..., With R(s;,s;41) for all ¢ >0

Formal verification 2 Marius Minea

Model Checking Basics 5

Modeling: circuits and programs

e sequential circuits: a variable for each state element (register) and
for primary inputs
instantaneous combinational propagation assumed

e asynchronous circuits: one variable for each signal
(in more complex/accurate models: explicit physical time)

e programs:. declared variables 4+ program counter
(for procedures, need to keep track of local variables on stack during
time of procedure activation; potentially infinite-state)

Formal verification 2 Marius Minea

Model Checking Basics 6
Synchrony and asynchrony

Types of composition
(deriving system behavior from behavior of components)

e synchronous: conjunction (simultaneous transitions)
R(V, V") = R1(V1,V]) A Ro(Vo, V) V=Vul,

e asynchronous: disjunction (individual transitions)
R(V, V') = Ri(V1,V{) NEqa(V \ V1) V Ra(Va, V3) A EqQ(V \ V)
where Eq(U) = Ayepy(v = 0')

— arbitrary interleaving between component transitions
— a transition changes just the variables of one component
— simultaneous transitions considered impossible

Programs are usually modeled asynchronously (there is no physical
synchronization between instructions of concurrent programs)

Formal verification 2 Marius Minea

Model Checking Basics
Modeling behavior

Reactive systems

— interact with the environment (reaction to a given stimulus)
— often have infinite execution

= a computation = infinite set of states

= it is not enough to represent input-output behavior

— Examples:
a given (error) state is not reached

the system does not deadlock

More generally: properties described in temporal logic

— modal logic (truth with temporal modalities)

— used starting in anntiquity for reasoning about time

— formalized and applied by Pnueli (1977) to concurrent programs

Formal verification 2 Marius Minea

Model Checking Basics 8

Linear Temporal Logic (LTL)

— defined by Pnueli in 1977 (Turing Award 1996)

— describes events along an execution trace = linear structure

e.g. an event happens in the future; a property is invariant starting
from a given timepoint; an event follows another event

Temporal operators (truth modalities along an execution trace):
e X : in the next state

e F: sometime in the future (incl. now)
e G: globally (in every future state, starting now) O

e U : until, propy must hold until prop, appears
sometimes we also define

& O

e R (release): appearance of prop; releases the need for props

Formal verification 2 Marius Minea

Model Checking Basics 9

Syntax of LTL Formulas

— we wish a property to hold for all trajectories
= we use the wuniversal quantifier A
— formulas are of the form A f, where f is a path formula
— Syntax of path formulas
f =0 (for p € AP)
| —fil fiviol| finfo
| XfilFfilGfil AVUf2 | iR f2

Formal verification 2 Marius Minea

Model Checking Basics

Semantics of LTL

10

Denote M, s = f:

M,sE=p
M,s=Af
M, m =p
M,m = —f
M77T :fl\/fQ
M,m = f1Nf?
M,7m =X f
M,mt=Ff
M,mr=Gf
M,m = f1Uf>

M, = f1 R f2

Formal verification 2

in the model M, state s satisfies f
7t = suffix of the path m = sgsyso... starting at s,

A B

p € L(s)

vV path « from s, M, 7 = f

M,s = p, for p e AP and s the first state of =«
M, &= f

M,m=fi1VvVMmrmE=f

M, = fiANM,7 = fo

M,7r1 — f

3k >0.M,7F = f

Vk>0.M, 7k = f

3k >0. M, 7k = foAVj<k.M,nd = f
Vk>0.(Vj<k.M,nl = f1) = M,7F = f5

Marius Minea

Model Checking Basics 11

The temporal logic CTL¥*

Some properties cannot be expressed in the linear time model:

e.g. it is possible to reach a state

= alternative model: computation trees:

infinite unfolding of state-transition system starting from initial state

req ack @

Formal verification 2 Marius Minea

Model Checking Basics
Structure of CTL* Formulas

12

In addition to LTL operators:
existential quantifier E (there exists a path)

Two types of formulas:
— State formulas, evaluated in a state

f =0 (unde p € AP)
| =fil fivia] finf
| Eg| Ag (where g = path formula)

— path formulas, evaluated along a path
g = f (where f = state formula)

| =91 1 91V g2 | 91 A9

| Xg1 | Fg1 1 Gg11g91Ugz | 91Rgo

Semantics: similar to LTL, plus:
M,s = Eg < da path # from s such that M,n =g

Formal verification 2

Marius Minea

Model Checking Basics 13

Relations among temporal operators

fAg=—-(=fV-g)
fRg==(=fU~g)
Ff=trueU f
GfE—lF—lf
AfE—lE—If

= Operators -, VvV, X, U and E suffice to express any CTL* formula.

Formal verification 2 Marius Minea

Model Checking Basics 14

A sublogic: CTL

CTL (Computation Tree Logic) [Clarke, Emerson 1981]
— sufficient in many cases, but simpler = more efficient algorithms

— branching structure, like CTL*
— quantifies over all possible execution paths from a state
—operators X, F, G, U, Rmust be immediately preceded by Aor E

— syntax of path formulas:
g =Xf|I|Ff|Gf]| fiUfo| fiRf2

Formal verification 2 Marius Minea

Model Checking Basics 15

CTL: fundamental and derived operators

10 combinations, all expressible using EX, EGsi EU :

e AX f = -EX —f

e EF f = E [trueVU f]

e AF f=-EG-f

) AGfE—IEF—lf

e A[fUg]=-EG-gA-E[-gU(=f A —g)]
e E[fRg] =-A[~fU—g]

e A[fRyg] =—-E[~fU~—g]

Formal verification 2 Marius Minea

Model Checking Basics 16

Sample CTL formulas

o EF finish

It is possible to reach a state in which finish = true.
e AG (send — AF ack)

Any send is eventually followed by an ack.
e AF AG stable

In any execution, from a given moment on, stable holds overall.
e AG (req — A[regU grant])

A req stays always active until receiving a grant.
o AG AF ready

On any path, ready holds an infinite number of times.
o AGEF restart

From any state it is possible to get to the restart state.

Formal verification 2 Marius Minea

Model Checking Basics 17

Relations among various logics

CTL and LTL are incomparable:

— AFGpisin LTL, has no CTL equivalent

— AGEFpisin CTL, has no LTL equivalent

— their disjunction is in CTL*, but not in CTL, nor LTL

Some techniques (compositionality, abstraction) need restrictions:
typically, only the universal quantifier A is allowed

— ACTL (included in CTL, incomparable to LTL)

— ACTL* (included in CTL*, more expressive than LTL)

Formal verification 2 Marius Minea

Model Checking Basics 18

T he notion of fairness

in practice: reasonable assumptions of the sort:

— an arbiter does not continuously ignore a particular request
— a continuously retransmitted message reaches destination
— properties which can be expressed in CTL* but not CTL
= define a new semantics for CTL with fairness

A fairness constraint is a formula in temporal logic.

A path is fair is each constraint is true infinitely often along the path.
In particular: constraint expressed as set of states:
a fair path passes through that state infinitely often

Formal verification 2 Marius Minea

Model Checking Basics

CTL with fairness

19

Augment Kripke structure, M = (S,Sg,R,L,F), by F C 25

(F = set of state sets, {P1,---,Pn}, P, CS)

inf(m) d:ef {s | s = s; for infinitely many i}

(set of states apearing infinitely often on x)

w is fair & VP e F . inf(r) NP # 0.
(7 passes infinitely often through any set in F)

Denote = the satifaction relationship with fairness

Modified clauses in CTL semantics:
M,sE=pp < there is a fair path from s

and p € L(s)
M,s=pEg < dfair path # from scu M, 7 =r g
M,s=p Ag <& V fair paths # from s, M, 7 =r g

Formal verification 2

Marius Minea

Model checking BRADdel checking. Problem statement 20

Given a Kripke structure M = (S, Sp, R, L) and a formula f in temporal
logic, find the set of states S that satisfy f:
{seS|M,s= [}

T he specification is satisfied if all initial states satisfy f:
Vsg € Sg.-M,so = f

History
— independently, Clarke & Emerson, resp. Queille & Sifakis (1981).
— iniyially: 10% — 10° states. currently, symbolic techniques: ca. 10100

states

Model checking for CTL

— Decompose according to the structure of formula f. For any s € S,
compute I(s) = set of subformulas of f true in s.

— initially I(s) = L(s). Trivial for logic connectors —, V, A

— EX f: label any state with a successoor labeled by cu f.

— Other basic operators: EU and EG

Formal verification 2 Marius Minea

Model Checking Basics 21

Model checking for CTL. The EU Operator

E [f1 VU fo]: backwards traversal from f», as long as f1 holds.

procedure CheckEU(f1, fo)
T:={s| f2el(s)}
foralls € T dol(s) :=1(s) U{E[f1 U fo]};
whileT # () do
chooses € T,
T =T\ {s};
forall s; . R(s1,s) do
ifE[f1Uf2] €1(s1) A f1 €1(s1) then
I(s1) :=1(s1) U{E[f1 U fol},
T :=TU{s1};

Formal verification 2 Marius Minea

Model Checking Basics 22

Model checking for CTL. The EG Operator

EG f. consider only states that satisfy f. Traverse backwards starting
from strongly connected components (SCQC)

procedure CheckEG(f)
= {s| f € Us)};
SCC := {C| C is a nontrivial SCC in S'};
T :=Ucesccls|s € C};
foralls € T dol(s) :=1(s) U{EG f};
whileT # () do
chooses € T,
T =T\ {s}:
foralls; . s; € S’ A R(s1,s) do
IFTEG f € 1(s1) then
l(s1) = 1(s1) U{EG f};
T :=TU{s1};

Formal verification 2 Marius Minea

Model Checking Basics 23
Model checking with fairness

Consider the fairness constraint F = {Py,---, P;}, with P, C S

Let fair be a new atomic proposition, true in s iff there is a fair path
starting from s.

Thus faire L(s) & M,s =p EG true.

For the other operators, the problem is reduced to ordinary model
checking

M,s=pp< M,s|=pA fair

M,s =p EXf < M,s = EX(f A fair)

M,s =Er E[f1U fo]l & M,s = E|[f1 U (f2 A fair)]

For M,s =r EG f we modify the previous algorithm, considering only
SCCs with Vi . C N P, # (0 (that contain at least a state from each
component of the fairness constraint)

Formal verification 2 Marius Minea

Model Checking Basics 24

Complexity of model checking algorithms

— model checking CTL: O(|f] - (IS|+|R)|))
(linear in size of model and formula)

— CTL with fairness F: O(|f| - (|S|+ |R]|) - |F])
— LTL: PSPACE-complet (M| - 200D

different type of algorithm, based on a tableau (automaton) construc-
tion
— CTL*: like LTL M| - >O0([f])

CTL: often preferred due to the polynomial algorithm
but also in LTL, the exponential is in the size of the formula (small)

Formal verification 2 Marius Minea

