
Model Checking Basics

October 13, 2005

• Finite state systems

• Temporal logics: CTL*, CTL, LTL

• Explicit-state model checking

Formal verification 2 Marius Minea

Model Checking Basics 2

What kind of systems can we verify ?

– systems whose behavior can be described mathematically

– we analyze: the interaction of the system with its environment

– system state = all quantities that determine its future behavior in

time

– the definition of state depends on the abstraction level in

Example for a processor: instruction set level; internal organization

(incl. pipeline, etc.); register transfer level; gate-level; transistor level

System classification:

– discrete, continuous or hybrid systems

– finite (necessarily discrete) or infinite (continuous systems, recursive

programs, programs with dynamic data structures)

Formal verification 2 Marius Minea

Model Checking Basics 3
Modeling of finite-state systems

– Finite state machines (automata): states + transitions
– Programs (finite): variables + program counter
There is no conceptual difference !

Let V = {v1, v2, · · · , vn} be a set of variables.
A state: an assignment s : V → D of values from a given domain D

for each variable v ∈ V .
– A state (assignment) ⇔ a formula true only for that assignment:
〈v1 ← 7, v2 ← 4, v3 ← 2〉 (v1 = 7) ∧ (v2 = 4) ∧ (v3 = 2)
– A formula ↔ the set of all assignments that make it true
e.g. v1 ≤ 5 ∧ v2 > 3
⇒ sets of states can be represented by logic formulas

– A transition s→ s′: a formula over V ∪ V ′

V’ = copy of V (next state formulas)
ex. (semaphore = red) ∧ (semaphore′ = green)
– set of all transitions: transition relation = a formula R(V, V ′)

Formal verification 2 Marius Minea

Model Checking Basics 4
Modeling with Kripke structures

Kripke structure = labeled finite-state automaton

M = (S, S0, R, L)

– S: finite state set

– S0 ⊆ S: set of initial states

– R ⊆ S × S: total transition relation ∀s ∈ S ∃s′ ∈ S . (s, s′) ∈ R

(from every state there is at least one transition)

– L : S → 2AP : state labeling function

AP =set of atomic propositions (observations that appear in formu-

las/properties/specifications). Examples:

– a state is stable or not

– define the proposition bad ::= red recvd > 1 (Spin project)

Path (trajectory): infinte set of states starting from s0:

π = s0s1s2 . . ., with R(si, si+1) for all i ≥ 0

Formal verification 2 Marius Minea

Model Checking Basics 5

Modeling: circuits and programs

• sequential circuits: a variable for each state element (register) and

for primary inputs

instantaneous combinational propagation assumed

• asynchronous circuits: one variable for each signal

(in more complex/accurate models: explicit physical time)

• programs: declared variables + program counter

(for procedures, need to keep track of local variables on stack during

time of procedure activation; potentially infinite-state)

Formal verification 2 Marius Minea

Model Checking Basics 6

Synchrony and asynchrony

Types of composition

(deriving system behavior from behavior of components)

• synchronous: conjunction (simultaneous transitions)

R(V, V ′) = R1(V1, V ′1) ∧R2(V2, V ′2) V = V1 ∪ V2

• asynchronous: disjunction (individual transitions)

R(V, V ′) = R1(V1, V ′1) ∧ Eq(V \ V1) ∨R2(V2, V ′2) ∧ Eq(V \ V2)

where Eq(U) =
∧

v∈U(v = v′)

– arbitrary interleaving between component transitions

– a transition changes just the variables of one component

– simultaneous transitions considered impossible

Programs are usually modeled asynchronously (there is no physical

synchronization between instructions of concurrent programs)

Formal verification 2 Marius Minea

Model Checking Basics 7

Modeling behavior

Reactive systems

– interact with the environment (reaction to a given stimulus)

– often have infinite execution

⇒ a computation = infinite set of states

⇒ it is not enough to represent input-output behavior

– Examples:

a given (error) state is not reached

the system does not deadlock

More generally: properties described in temporal logic

– modal logic (truth with temporal modalities)

– used starting in anntiquity for reasoning about time

– formalized and applied by Pnueli (1977) to concurrent programs

Formal verification 2 Marius Minea

Model Checking Basics 8

Linear Temporal Logic (LTL)

– defined by Pnueli in 1977 (Turing Award 1996)

– describes events along an execution trace ⇒ linear structure

e.g. an event happens in the future; a property is invariant starting

from a given timepoint; an event follows another event

Temporal operators (truth modalities along an execution trace):

• X : in the next state ◦
• F : sometime in the future (incl. now) �
• G : globally (in every future state, starting now)

• U : until; prop1 must hold until prop2 appears

sometimes we also define

• R (release): appearance of prop1 releases the need for prop2

Formal verification 2 Marius Minea

Model Checking Basics 9

Syntax of LTL Formulas

– we wish a property to hold for all trajectories

⇒ we use the universal quantifier A

– formulas are of the form A f , where f is a path formula

– Syntax of path formulas

f ::= p (for p ∈ AP)

| ¬f1 | f1 ∨ f2 | f1 ∧ f2
| X f1 | F f1 | G f1 | f1 U f2 | f1 R f2

Formal verification 2 Marius Minea

Model Checking Basics 10

Semantics of LTL

Denote M, s |= f : in the model M , state s satisfies f

πi = suffix of the path π = s0s1s2 . . . starting at si

M, s |= p ⇔ p ∈ L(s)
M, s |= A f ⇔ ∀ path π from s, M, π |= f
M, π |= p ⇔ M, s |= p, for p ∈ AP and s the first state of π
M, π |= ¬f ⇔ M, π 6|= f
M, π |= f1 ∨ f2 ⇔ M, π |= f1 ∨M, π |= f2
M, π |= f1 ∧ f2 ⇔ M, π |= f1 ∧M, π |= f2
M, π |= X f ⇔ M, π1 |= f

M, π |= F f ⇔ ∃k ≥ 0 . M, πk |= f

M, π |= G f ⇔ ∀k ≥ 0 . M, πk |= f

M, π |= f1 U f2 ⇔ ∃k ≥ 0 . M, πk |= f2 ∧ ∀j < k . M, πj |= f1
M, π |= f1 R f2 ⇔ ∀k ≥ 0 . (∀j < k . M, πj 6|= f1)→M, πk |= f2

Formal verification 2 Marius Minea

Model Checking Basics 11

The temporal logic CTL*

Some properties cannot be expressed in the linear time model:

e.g. it is possible to reach a state

⇒ alternative model: computation trees:

infinite unfolding of state-transition system starting from initial state

-��
��
req

�
�

�
����
��
wait

��
?

@
@

@
@R

��
��
ack�

��
��
req

?

��
��
wait

�
�

�	

@
@

@R

��
��
wait

�
�

�	

@
@

@R

��
��
ack

?

��
��
wait

�
�

�	

@
@

@R

��
��
ack

?

��
��
req

?

��
��
wait

�
�

�	

@
@

@R

��
��
ack

?

��
��
req

?

��
��
wait

�
�

�	

@
@

@R

Formal verification 2 Marius Minea

Model Checking Basics 12

Structure of CTL* Formulas

In addition to LTL operators:

existential quantifier E (there exists a path) ∃

Two types of formulas:

– state formulas, evaluated in a state

f ::= p (unde p ∈ AP)

| ¬f1 | f1 ∨ f2 | f1 ∧ f2
| E g | A g (where g = path formula)

– path formulas, evaluated along a path

g ::= f (where f = state formula)

| ¬g1 | g1 ∨ g2 | g1 ∧ g2
| X g1 | F g1 | G g1 | g1 U g2 | g1 R g2

Semantics: similar to LTL, plus:

M, s |= E g ⇔ ∃ a path π from s such that M, π |= g

Formal verification 2 Marius Minea

Model Checking Basics 13

Relations among temporal operators

• f ∧ g ≡ ¬(¬f ∨ ¬g)

• f R g ≡ ¬(¬f U¬g)

• F f ≡ trueU f

• G f ≡ ¬F¬f

• A f ≡ ¬E¬f

⇒ Operators ¬, ∨, X , U and E suffice to express any CTL* formula.

Formal verification 2 Marius Minea

Model Checking Basics 14

A sublogic: CTL

CTL (Computation Tree Logic) [Clarke, Emerson 1981]

– sufficient in many cases, but simpler ⇒ more efficient algorithms

– branching structure, like CTL*

– quantifies over all possible execution paths from a state

– operators X , F , G , U , Rmust be immediately preceded by A or E

– syntax of path formulas:

g ::= X f | F f | G f | f1 U f2 | f1 R f2

Formal verification 2 Marius Minea

Model Checking Basics 15

CTL: fundamental and derived operators

10 combinations, all expressible using EX , EG şi EU :

• AX f ≡ ¬EX¬f

• EF f ≡ E [trueU f]

• AF f ≡ ¬EG¬f

• AG f ≡ ¬EF¬f

• A [f U g] ≡ ¬EG¬g ∧ ¬E [¬g U (¬f ∧ ¬g)]

• E [f R g] ≡ ¬A [¬f U¬g]

• A [f R g] ≡ ¬E [¬f U¬g]

Formal verification 2 Marius Minea

Model Checking Basics 16

Sample CTL formulas

• EFfinish

It is possible to reach a state in which finish = true.

• AG (send→ AFack)

Any send is eventually followed by an ack.

• AFAG stable

In any execution, from a given moment on, stable holds overall.

• AG (req→ A [regUgrant])

A req stays always active until receiving a grant.

• AGAF ready

On any path, ready holds an infinite number of times.

• AGEF restart

From any state it is possible to get to the restart state.

Formal verification 2 Marius Minea

Model Checking Basics 17

Relations among various logics

CTL and LTL are incomparable:

– AFG p is in LTL, has no CTL equivalent

– AGEF p is in CTL, has no LTL equivalent

– their disjunction is in CTL*, but not in CTL, nor LTL

Some techniques (compositionality, abstraction) need restrictions:

typically, only the universal quantifier A is allowed

– ACTL (included in CTL, incomparable to LTL)

– ACTL* (included in CTL*, more expressive than LTL)

Formal verification 2 Marius Minea

Model Checking Basics 18

The notion of fairness

in practice: reasonable assumptions of the sort:

– an arbiter does not continuously ignore a particular request

– a continuously retransmitted message reaches destination

= properties which can be expressed in CTL* but not CTL

⇒ define a new semantics for CTL with fairness

A fairness constraint is a formula in temporal logic.

A path is fair is each constraint is true infinitely often along the path.

In particular: constraint expressed as set of states:

a fair path passes through that state infinitely often

Formal verification 2 Marius Minea

Model Checking Basics 19

CTL with fairness

Augment Kripke structure, M = (S, S0, R, L, F), by F ⊆ 2S

(F = set of state sets, {P1, · · · , Pn}, Pi ⊆ S)

inf(π)
def
= {s | s = si for infinitely many i}

(set of states apearing infinitely often on π)

π is fair ⇔ ∀P ∈ F . inf(π) ∩ P 6= ∅.
(π passes infinitely often through any set in F)

Denote |=F the satifaction relationship with fairness

Modified clauses in CTL semantics:
M, s |=F p ⇔ there is a fair path from s

and p ∈ L(s)
M, s |=F E g ⇔ ∃ fair path π from s cu M, π |=F g
M, s |=F A g ⇔ ∀ fair paths π from s, M, π |=F g

Formal verification 2 Marius Minea

Model Checking Basics 20Model checking. Problem statement

Given a Kripke structure M = (S, S0, R, L) and a formula f in temporal

logic, find the set of states S that satisfy f :

{s ∈ S |M, s |= f}

The specification is satisfied if all initial states satisfy f :

∀s0 ∈ S0 . M, s0 |= f

History

– independently, Clarke & Emerson, resp. Queille & Sifakis (1981).

– iniyially: 104−105 states. currently, symbolic techniques: ca. 10100

states

Model checking for CTL

– Decompose according to the structure of formula f . For any s ∈ S,

compute l(s) = set of subformulas of f true in s.

– initially l(s) = L(s). Trivial for logic connectors ¬,∨,∧
– EX f : label any state with a successoor labeled by cu f .

– Other basic operators: EU and EG

Formal verification 2 Marius Minea

Model Checking Basics 21

Model checking for CTL. The EU Operator

E [f1 U f2]: backwards traversal from f2, as long as f1 holds.

procedureCheckEU(f1, f2)

T := {s | f2 ∈ l(s)}
forall s ∈ T do l(s) := l(s) ∪ {E [f1 U f2]};
while T 6= ∅ do

choose s ∈ T ;

T := T \ {s};
forall s1 . R(s1, s) do

if E [f1 U f2] 6∈ l(s1) ∧ f1 ∈ l(s1) then

l(s1) := l(s1) ∪ {E [f1 U f2]};
T := T ∪ {s1};

Formal verification 2 Marius Minea

Model Checking Basics 22

Model checking for CTL. The EG Operator

EG f : consider only states that satisfy f . Traverse backwards starting

from strongly connected components (SCC)

procedureCheckEG(f)

S′ := {s | f ∈ l(s)};
SCC := {C | C is a nontrivial SCC in S′};
T := ∪C∈SCC{s | s ∈ C};
forall s ∈ T do l(s) := l(s) ∪ {EG f};
while T 6= ∅ do

choose s ∈ T ;

T := T \ {s};
forall s1 . s1 ∈ S′ ∧R(s1, s) do

if EG f 6∈ l(s1) then

l(s1) := l(s1) ∪ {EG f};
T := T ∪ {s1};

Formal verification 2 Marius Minea

Model Checking Basics 23

Model checking with fairness

Consider the fairness constraint F = {P1, · · · , Pk}, with Pi ⊆ S

Let fair be a new atomic proposition, true in s iff there is a fair path

starting from s.

Thus fair ∈ L(s) ⇔ M, s |=F EG true.

For the other operators, the problem is reduced to ordinary model

checking

M, s |=F p⇔M, s |= p ∧ fair

M, s |=F EX f ⇔M, s |= EX (f ∧ fair)

M, s |=F E [f1 U f2]⇔M, s |= E [f1 U (f2 ∧ fair)]

For M, s |=F EG f we modify the previous algorithm, considering only

SCCs with ∀i . C ∩ Pi 6= ∅ (that contain at least a state from each

component of the fairness constraint)

Formal verification 2 Marius Minea

Model Checking Basics 24

Complexity of model checking algorithms

– model checking CTL: O(|f | · (|S|+ |R|))
(linear in size of model and formula)

– CTL with fairness F: O(|f | · (|S|+ |R|) · |F |)
– LTL: PSPACE-complet |M | · 2O(|f |)

different type of algorithm, based on a tableau (automaton) construc-

tion

– CTL*: like LTL |M | · 2O(|f |)

CTL: often preferred due to the polynomial algorithm

but also in LTL, the exponential is in the size of the formula (small)

Formal verification 2 Marius Minea

