Model Checking Basics
October 13, 2005

e Finite state systems
e Temporal logics: CTL*, CTL, LTL
e EXplicit-state model checking
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What kind of systems can we verify ?

— systems whose behavior can be described mathematically

— we analyze: the interaction of the system with its environment

— system state all quantities that determine its future behavior in
time

— the definition of state depends on the abstraction level in

Example for a processor: instruction set level; internal organization
(incl. pipeline, etc.); register transfer level; gate-level; transistor level

System classification:

— discrete, continuous or hybrid systems

— finite (necessarily discrete) or infinite (continuous systems, recursive
programs, programs with dynamic data structures)
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— Finite state machines (automata): states 4 transitions
— Programs (finite): variables + program counter
There is no conceptual difference !

Let V = {vq,vp,---,vn} be a set of variables.

A state: an assignment s :V — D of values from a given domain D
for each variable v € V.

— A state (assignment) < a formula true only for that assignment:
(V1 = 7,00 «— 4,03 «— 2) (vi =7)A(v2 =4) A (v3 =2)
— A formula < the set of all assignments that make it true

e.d. v1 <bAvy >3

= Sets of states can be represented by logic formulas

— A transition s — s’: a formula over VUV’

V' = copy of V (next state formulas)

ex. (semaphore = red) A (semaphore’ = green)

— set of all transitions: transition relation = a formula R(V, V')
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Modeling with Kripke structures

Kripke structure = labeled finite-state automaton
M = (S,Sp,R, L)
— 5. finite state set
— Sp C S: set of initial states
— RC S x S: total transition relation Vs e S3s' €S . (s,s') € R
(from every state there is at least one transition)
— LS — 24P state labeling function

AP =set of atomic propositions (observations that appear in formu-
las/properties/specifications). Examples:

— a state is stable or not

— define the proposition bad ::= red_recvd > 1 (Spin project)

Path (trajectory): infinte set of states starting from sq:
T = 505152 ..., With R(s;,s;41) for all ¢ >0
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Modeling: circuits and programs

e sequential circuits: a variable for each state element (register) and
for primary inputs
instantaneous combinational propagation assumed

e asynchronous circuits: one variable for each signal
(in more complex/accurate models: explicit physical time)

e programs:. declared variables 4+ program counter
(for procedures, need to keep track of local variables on stack during
time of procedure activation; potentially infinite-state)

Formal verification 2 Marius Minea



Model Checking Basics 6
Synchrony and asynchrony

Types of composition
(deriving system behavior from behavior of components)

e synchronous: conjunction (simultaneous transitions)
R(V, V") = R1(V1,V]) A Ro(Vo, V) V=Vul,

e asynchronous: disjunction (individual transitions)
R(V, V') = Ri(V1,V{) NEqa(V \ V1) V Ra(Va, V3) A EqQ(V \ V)
where Eq(U) = Ayepy(v = 0')

— arbitrary interleaving between component transitions
— a transition changes just the variables of one component
— simultaneous transitions considered impossible

Programs are usually modeled asynchronously (there is no physical
synchronization between instructions of concurrent programs)
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Modeling behavior

Reactive systems

— interact with the environment (reaction to a given stimulus)
— often have infinite execution

= a computation = infinite set of states

= it is not enough to represent input-output behavior

— Examples:
a given (error) state is not reached

the system does not deadlock

More generally: properties described in temporal logic

— modal logic (truth with temporal modalities)

— used starting in anntiquity for reasoning about time

— formalized and applied by Pnueli (1977) to concurrent programs
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Linear Temporal Logic (LTL)

— defined by Pnueli in 1977 (Turing Award 1996)

— describes events along an execution trace = linear structure

e.g. an event happens in the future; a property is invariant starting
from a given timepoint; an event follows another event

Temporal operators (truth modalities along an execution trace):
e X : in the next state

e F: sometime in the future (incl. now)
e G: globally (in every future state, starting now) O

e U : until, propy must hold until prop, appears
sometimes we also define

& O

e R (release): appearance of prop; releases the need for props
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Syntax of LTL Formulas

— we wish a property to hold for all trajectories
= we use the wuniversal quantifier A
— formulas are of the form A f, where f is a path formula
— Syntax of path formulas
f =0 (for p € AP)
| —fil fiviol| finfo
| XfilFfilGfil AVUf2 | iR f2
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Semantics of LTL

10

Denote M, s = f:

M,sE=p
M,s=Af
M, m =p
M,m = —f
M77T :fl\/fQ
M,m = f1Nf?
M,7m =X f
M,mt=Ff
M,mr=Gf
M,m = f1Uf>

M, = f1 R f2

Formal verification 2

in the model M, state s satisfies f
7t = suffix of the path m = sgsyso... starting at s,

A B

p € L(s)

vV path « from s, M, 7 = f

M,s = p, for p e AP and s the first state of =«
M, &= f

M,m=fi1VvVMmrmE=f

M, = fiANM,7 = fo

M,7r1 — f

3k >0.M,7F = f

Vk>0.M, 7k = f

3k >0. M, 7k = foAVj<k.M,nd = f
Vk>0.(Vj<k.M,nl = f1) = M,7F = f5
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The temporal logic CTL¥*

Some properties cannot be expressed in the linear time model:

e.g. it is possible to reach a state

= alternative model: computation trees:

infinite unfolding of state-transition system starting from initial state

req ack @
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Structure of CTL* Formulas

12

In addition to LTL operators:
existential quantifier E (there exists a path)

Two types of formulas:
— State formulas, evaluated in a state

f =0 (unde p € AP)
| =fil fivia] finf
| Eg| Ag (where g = path formula)

— path formulas, evaluated along a path
g = f (where f = state formula)

| =91 1 91V g2 | 91 A9

| Xg1 | Fg1 1 Gg11g91Ugz | 91Rgo

Semantics: similar to LTL, plus:
M,s = Eg < da path # from s such that M,n =g

Formal verification 2
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Relations among temporal operators

fAg=—-(=fV-g)
fRg==(=fU~g)
Ff=trueU f
GfE—lF—lf
AfE—lE—If

= Operators -, VvV, X, U and E suffice to express any CTL* formula.
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A sublogic: CTL

CTL (Computation Tree Logic) [Clarke, Emerson 1981]
— sufficient in many cases, but simpler = more efficient algorithms

— branching structure, like CTL*
— quantifies over all possible execution paths from a state
—operators X, F, G, U, Rmust be immediately preceded by Aor E

— syntax of path formulas:
g =Xf|I|Ff|Gf]| fiUfo| fiRf2
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CTL: fundamental and derived operators

10 combinations, all expressible using EX, EGsi EU :

e AX f = -EX —f

e EF f = E [trueVU f]

e AF f=-EG-f

) AGfE—IEF—lf

e A[fUg]=-EG-gA-E[-gU(=f A —g)]
e E[fRg] =-A[~fU—g]

e A[fRyg] =—-E[~fU~—g]
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Sample CTL formulas

o EF finish

It is possible to reach a state in which finish = true.
e AG (send — AF ack)

Any send is eventually followed by an ack.
e AF AG stable

In any execution, from a given moment on, stable holds overall.
e AG (req — A[regU grant])

A req stays always active until receiving a grant.
o AG AF ready

On any path, ready holds an infinite number of times.
o AGEF restart

From any state it is possible to get to the restart state.
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Relations among various logics

CTL and LTL are incomparable:

— AFGpisin LTL, has no CTL equivalent

— AGEFpisin CTL, has no LTL equivalent

— their disjunction is in CTL*, but not in CTL, nor LTL

Some techniques (compositionality, abstraction) need restrictions:
typically, only the universal quantifier A is allowed

— ACTL (included in CTL, incomparable to LTL)

— ACTL* (included in CTL*, more expressive than LTL)
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T he notion of fairness

in practice: reasonable assumptions of the sort:

— an arbiter does not continuously ignore a particular request
— a continuously retransmitted message reaches destination
— properties which can be expressed in CTL* but not CTL
= define a new semantics for CTL with fairness

A fairness constraint is a formula in temporal logic.

A path is fair is each constraint is true infinitely often along the path.
In particular: constraint expressed as set of states:
a fair path passes through that state infinitely often
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CTL with fairness

19

Augment Kripke structure, M = (S,Sg,R,L,F), by F C 25

(F = set of state sets, {P1,---,Pn}, P, CS)

inf(m) d:ef {s | s = s; for infinitely many i}

(set of states apearing infinitely often on x)

w is fair & VP e F . inf(r) NP # 0.
(7 passes infinitely often through any set in F)

Denote = the satifaction relationship with fairness

Modified clauses in CTL semantics:
M,sE=pp < there is a fair path from s

and p € L(s)
M,s=pEg < dfair path # from scu M, 7 =r g
M,s=p Ag <& V fair paths # from s, M, 7 =r g

Formal verification 2
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Given a Kripke structure M = (S, Sp, R, L) and a formula f in temporal
logic, find the set of states S that satisfy f:
{seS|M,s= [}

T he specification is satisfied if all initial states satisfy f:
Vsg € Sg.-M,so = f

History
— independently, Clarke & Emerson, resp. Queille & Sifakis (1981).
— iniyially: 10% — 10° states. currently, symbolic techniques: ca. 10100

states

Model checking for CTL

— Decompose according to the structure of formula f. For any s € S,
compute I(s) = set of subformulas of f true in s.

— initially I(s) = L(s). Trivial for logic connectors —, V, A

— EX f: label any state with a successoor labeled by cu f.

— Other basic operators: EU and EG
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Model checking for CTL. The EU Operator

E [f1 VU fo]: backwards traversal from f», as long as f1 holds.

procedure CheckEU(f1, fo)
T:={s| f2el(s)}
foralls € T dol(s) :=1(s) U{E[f1 U fo]};
whileT # () do
chooses € T,
T =T\ {s};
forall s; . R(s1,s) do
ifE[f1Uf2] €1(s1) A f1 €1(s1) then
I(s1) :=1(s1) U{E[f1 U fol},
T :=TU{s1};
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Model checking for CTL. The EG Operator

EG f. consider only states that satisfy f. Traverse backwards starting
from strongly connected components (SCQC)

procedure CheckEG(f)
= {s| f € Us)};
SCC := {C| C is a nontrivial SCC in S'};
T :=Ucesccls|s € C};
foralls € T dol(s) :=1(s) U{EG f};
whileT # () do
chooses € T,
T =T\ {s}:
foralls; . s; € S’ A R(s1,s) do
IFTEG f € 1(s1) then
l(s1) = 1(s1) U{EG f};
T :=TU{s1};
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Model checking with fairness

Consider the fairness constraint F = {Py,---, P;}, with P, C S

Let fair be a new atomic proposition, true in s iff there is a fair path
starting from s.

Thus faire L(s) & M,s =p EG true.

For the other operators, the problem is reduced to ordinary model
checking

M,s=pp< M,s|=pA fair

M,s =p EXf < M,s = EX(f A fair)

M,s =Er E[f1U fo]l & M,s = E|[f1 U (f2 A fair)]

For M,s =r EG f we modify the previous algorithm, considering only
SCCs with Vi . C N P, # (0 (that contain at least a state from each
component of the fairness constraint)
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Complexity of model checking algorithms

— model checking CTL: O(|f] - (IS|+|R)|))
(linear in size of model and formula)

— CTL with fairness F: O(|f| - (|S|+ |R]|) - |F])
— LTL: PSPACE-complet (M| - 200D

different type of algorithm, based on a tableau (automaton) construc-
tion
— CTL*: like LTL M| - >O0([f])

CTL: often preferred due to the polynomial algorithm
but also in LTL, the exponential is in the size of the formula (small)
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