Symbolic model checking. Binary decision diagrams

20 oct. 2005

Need to represent each state individually
\Rightarrow size of the state space severely limits applicability (size of a state determines how many states we can represent in memory)

- typically, limited to a few million states

State space explosion problem: for composed systems, state space is product of component state spaces \Rightarrow exponential in number of components
\Rightarrow Much of focus in formal verification is scaling to large state spaces
If reachable state set is much smaller than potential complete state space, can try to encode reached states using fewer bits (bitstate hashing, used in SPIN).
However, this is an approximation: on reaching an already hashed state, search stops (even though actual state may be different)
\Rightarrow part of state space may remain unexplored
\Rightarrow method is not sound

Problem: compute set of states reachable from initial states
(EF true)

- by forward traversal of graph starting from initial states
- R: set of explored states; F : frontier reached in current step

With individual states

$$
R=\emptyset ; F=S_{0}
$$

With state sets
while $(F \neq \emptyset)$
choose $s \in F$;
$F \leftarrow F \backslash\{s\} ; R \leftarrow R \cup\{s\}$
forall s^{\prime} with $s \rightarrow s^{\prime}$ if $s^{\prime} \notin F \cup R$ $F \leftarrow F \cup\left\{s^{\prime}\right\}$
\Rightarrow Algorithm can be expressed much easier is successor set of a state set can be computed in a single operation
\Rightarrow set R of reached states grows in each iteration but is finite

Symbolic model checking

- A new approach, based on exploring state sets
- idea: a set may sometimes be represented (by a forumula) in a much more compact way than individually representing each state
- need: efficient representation and manipulation for state sets and transition relation
[McMillan'92]
- with binary decision diagrams (BDDs) [Bryant'86]
- key idea 1: working with state sets
- used also for infinite state sets (continuous-time or hybrid systems)
- key idea 2: iterative computation until no more change
\Rightarrow notion of fixpoint

Fixpoint representations

Def: $x \in D$ is a fixpoint for $f: D \rightarrow D$ if $f(x)=x$.
Def: A lattice is a partially ordered set in which any finite subset has a least upper bound and a greatest lower bound
Ex: powerset (set of subsets) $\mathcal{P}(S)$ of S, with \subseteq as order

- We work with functions $\tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ over the lattice $\mathcal{P}(S)$
- We regard $S^{\prime} \subseteq S$ as a predicate over $S: S^{\prime}(s)=$ true $\Leftrightarrow s \in S^{\prime}$
in particular: $\emptyset=$ false, $S=$ true
$\Rightarrow \tau: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is a predicate transformer
Def:
- τ is monotone if $P \subseteq Q \Rightarrow \tau(P) \subseteq \tau(Q)$
- τ is union-continuous if for any sequence $P_{1} \subseteq P_{2} \subseteq \ldots$ we have $\tau\left(\cup_{i} P_{i}\right)=\cup_{i} \tau\left(P_{i}\right)$
- τ is intersection-continuous if for any sequence $P_{1} \supseteq P_{2} \supseteq \ldots$ we have $\tau\left(\cap_{i} P_{i}\right)=\cap_{i} \tau\left(P_{i}\right)$

Fixpoint theorems

A monotone predicate transformer over $\mathcal{P}(S)$ always has

- a minimal fixpoint, denoted $\mu Z . \tau(Z)$
- and a maximal fixpoint, denoted $\nu Z . \tau(Z)$
[Tarski]

If S is finite and τ is monotone, then τ is continuous for union and intersection.
τ monotone $\Rightarrow \tau^{i}$ (False) $\subseteq \tau^{i+1}$ (False) și $\tau^{i}($ True $) \supseteq \tau^{i+1}$ (True)
If τ is monotone and S is finite, there exist $i, j \geq 0$ such that $\forall k \geq i, \tau^{k}($ False $)=\tau^{i}($ False $)$ and $\forall k \geq j, \tau^{k}($ True $)=\tau^{j}($ True $)$

If τ is monotone and S is finite, there exist $i, j \geq 0$ such that $\mu Z . \tau(Z)=\tau^{i}($ False $)$ and $\nu Z . \tau(Z)=\tau^{j}($ True $)$

Computing the minimal/maximal fixpoint

```
function \(\operatorname{Lfp}(\tau\) : Trans) : Pred function \(\operatorname{Gfp}(\tau\) : Trans) : Pred
    \(Q:=\) False;
    \(Q^{\prime}:=\tau(Q)\);
    while \(\left(Q^{\prime} \neq Q\right)\) do
        \(Q:=Q^{\prime}\);
        \(Q^{\prime}:=\tau(Q) ;\)
    return \(Q\);
```

function $\operatorname{Gfp}(\tau$: Trans) : Pred
$Q:=$ True;
$Q^{\prime}:=\tau(Q) ;$
while $\left(Q^{\prime} \neq Q\right)$ do
$Q:=Q^{\prime}$;
$Q^{\prime}:=\tau(Q) ;$
return Q;

Fixpoint relations for CTL

We identify a CTL formula f with the set of states that satisfy it: $\{s \mid M, s \models f\}$

- $\mathbf{A F} f=\mu Z . f \vee \mathbf{A X} Z$
$\mathbf{E F} f=\mu Z . f \vee \mathbf{E X} Z$
- $\mathbf{A G} f=\nu Z . f \wedge \mathbf{A} \mathbf{X} Z$
$\mathbf{E G} f=\nu Z . f \wedge \mathbf{E X} Z$
- $\mathbf{A}\left[f_{1} \cup f_{2}\right]=\mu Z . f_{2} \vee\left(f_{1} \wedge \mathbf{A X} Z\right)$
- $\mathbf{E}\left[f_{1} \cup f_{2}\right]=\mu Z . f_{2} \vee\left(f_{1} \wedge \mathbf{E X} Z\right)$
- $\mathbf{A}\left[f_{1} \mathbf{R} f_{2}\right]=\nu Z . f_{2} \wedge\left(f_{1} \vee \mathbf{A X} Z\right)$
- $\mathbf{E}\left[f_{1} \mathbf{R} f_{2}\right]=\nu Z . f_{2} \wedge\left(f_{1} \vee \mathbf{E X} Z\right)$
minimal fixpoint: liveness properties: F maximal fixpoint: safety properties (invariants): G

Symbolic model checking algorithm

- works by structural decomposition of the formula

Check (f) returns $\{s \in S \mid M, s \models f\}$ (set of states satisfying f)
$\operatorname{Check}(p)=\{s \in S \mid p \in L(s)\}$ atomic propositions
$\operatorname{Check}(\neg f)=S \backslash \operatorname{Check}(f)$
$\operatorname{Check}(f \wedge g)=\operatorname{Check}(f) \cap \operatorname{Check}(g)$ complement
$\operatorname{Check}(E X f)=\operatorname{CheckEX}(\operatorname{Check}(f))$
CheckEX $(f(\bar{v}))=\exists \bar{v}^{\prime} .\left[f\left(\bar{v}^{\prime}\right) \wedge R\left(\bar{v}, \bar{v}^{\prime}\right)\right] \quad$ relational product
$\operatorname{Check}(\mathbf{E}[f \mathbf{U} g])=\operatorname{CheckEU}(\operatorname{Check}(f), \operatorname{Check}(g))$ using $\mathbf{E}\left[f_{1} \cup f_{2}\right]=\mu Z . f_{2} \vee\left(f_{1} \wedge \mathbf{E X} Z\right)$ și funcția Lfp
$\operatorname{Check}(E G f)=\operatorname{CheckEG}(\operatorname{Check}(f))$
using EG $f=\nu Z . f \wedge \mathbf{E X} Z$ and the functional Gfp

All of these basic operations can be expressed using BDDs

Binary Decision Diagrams (BDDs)

- a canonical and compact representation of Boolean functions
- with efficient manipulation algorithms
[R. Bryant, "Graph-based algorithms for boolean function manipulation", IEEE Transactions on Computers, 1986]
- significant impact on formal verification:

ACM Kanellakis Award for Theory \& Practice, 1998

- Randal E. Bryant:

BDDs ('86)

- Edmund M. Clarke, E. Allen Emerson: model checking ('81)
- Ken McMillan: symbolic model checking ('92)

Representations for Boolean functions

$f: B^{n} \rightarrow B$ - can encode both state sets and transition relations

- Usual representations (truth tables, Karnaugh diagrams, canonical sum of minterms) have exponential size
- \Rightarrow improvements: reduced sums of products, factorizations, etc.
- still exponentiale for some common functions (e.g. parity)
- some elementary operations may lead to exponential growth (e.g., negation)
- for non-canonical representations it is difficult to test:
- equivalence (checking needed after changes in circuit design)
- satisfiability: $\exists x_{1}, \cdots x_{n} . f\left(x_{1}, \cdots, x_{n}\right)=1$?

$$
\forall x \cdot f_{1}(x)=f_{2}(x) \equiv \neg \exists x \cdot f_{1}(x) \oplus f_{2}(x)=1
$$

Binary decision trees

- terminal nodes: function value (0 or 1)
- nonterminal nodes: variables
- branches (children): low(v) (left) / high(v) (right): correspond to assignment of 0 or 1 for the variable in the node

BDDs: obtained from binary decision trees applying 3 reduction rules

Reduction rule 1: Merge terminal nodes

Reduction rule 2: Merge isomorphic nodes

$f\left(n_{1}\right)=f\left(n_{2}\right) \Rightarrow$ merge n_{1} and n_{2}

Reduction rule 3: Eliminate redundant test

$\operatorname{low}(n)=\operatorname{high}(n) \Rightarrow$ eliminates testing at node n

Basic BDD properties

The 3 rules can be applied whatever the variable ordering down the tree.
In an ordered BDD (OBDD): one additional condition:
On all paths from root to terminals, variables appear in same order (there exists a global ordering of variables)

Theorem: For any Boolean function, its representation as an ordered BDD, reduced according to rules 1-3 is unique up to isomorphism.
\Rightarrow canonical representation
\Rightarrow equivalence or satisfiability checking in constant time

Note: A subgraph rooted as a BDD node is also a BDD
\Rightarrow BDDs for several functions may share subgraphs in the same forest

Effect of variable ordering

Consider the function: $\left(a_{1} \wedge b_{1}\right) \vee\left(a_{2} \wedge b_{2}\right) \vee\left(a_{3} \wedge b_{3}\right)$

Linear growth: $2(n+1)$

Exponential growth: 2^{n+1}

BDD algorithms: Apply

```
function \(\operatorname{Apply}(f, g: O B D D\), op : Operator) : OBDD
if is_leaf \((f) \wedge\) is_leaf \((g)\) return \(o p(f, g)\);
elsif ( \(f, g, o p, h\) ) in apply_cache return h ;
else
    \(x:=\) topvar \((f) / /\) variable at root of \(f\)
    \(y:=\operatorname{topvar}(g)\)
if \((\operatorname{ord}(x)=\operatorname{ord}(y)) / / x=\mathrm{y}=\) same variable
    \(h:=\) find_bdd \(\left(x, \operatorname{Apply}\left(\left.f\right|_{x=0},\left.g\right|_{x=0}, o p\right), \operatorname{Apply}\left(\left.f\right|_{x=1},\left.g\right|_{x=1}, o p\right)\right)\)
    // find_bdd creates a new BDD if not already existent
    elsif \((\operatorname{ord}(x)<\operatorname{ord}(y)) / / \times\) before y in ordering
    \(h:=\operatorname{find}\) _bdd \(\left(x, \operatorname{Apply}\left(\left.f\right|_{x=0}, g, o p\right), \operatorname{Apply}\left(\left.f\right|_{x=1}, g, o p\right)\right)\)
else \(h:=\operatorname{find}_{-} b d d\left(y, \operatorname{Apply}\left(f,\left.g\right|_{y=0}, o p\right), \operatorname{Apply}\left(f,\left.g\right|_{y=1}, o p\right)\right)\)
insert ( \(f, g, o p, h\) ) in apply_cache
return \(h\)
```

```
function Relprod( \(f, g: O B D D, E\) : varset) : OBDD
if \(f=\) false \(\vee g=\) false return false
elsif \(f=\operatorname{true} \wedge g=\) true return true
elsif \((f, g, E, h)\) in relprod_cache return \(h\)
else
    \(x:=\) topvar \((f) / /\) variable at root of \(f\)
    \(y:=\operatorname{topvar}(g)\)
    \(z:=\) topmost \((x, y) / /\) first in variable order
    \(h_{0}:=\operatorname{Rel} \operatorname{Prod}\left(\left.f\right|_{z=0},\left.g\right|_{z=0}, E\right)\)
    \(h_{1}:=\operatorname{ReIProd}\left(\left.f\right|_{z=1},\left.g\right|_{z=1}, E\right)\)
    if \(z \in E h:=\) bdd_or \(\left(h_{0}, h_{1}\right) / * \exists z . h=h_{0} \vee h_{1} * /\)
    else \(h:=\) bdd_if_then_else \(\left(z, h_{1}, h_{0}\right)\)
    insert ( \(f, g, E, h\) ) in relprod_cache
    return \(h\)
```


Complexity of BDD algorithms

- Reduction (to canonical form)
- Apply $\left(f_{1}\langle o p\rangle f_{2}\right)$
- Restrict $\left(\left.f\right|_{x_{i}=b}\right)$
- Compose ($\left.f_{1}\right|_{x_{i}=f_{2}}$)
- Satisfy-one (un \bar{x} cu $f(\bar{x})=1$)
- Satisfy-count $(|\{\bar{x} \mid f(\bar{x})=1\}|)$
$O(|G| \cdot \log |G|)$
$O\left(\left|G_{1}\right| \cdot\left|G_{2}\right|\right)$
$O(|G| \cdot \log |G|)$
$O\left(\left|G_{1}\right|^{2} \cdot\left|G_{2}\right|\right)$

Logarithmic factors can be eliminated (by more sophisticated algorithms or hashing)

Relational product may have exponential complexity

Implementation

- There are mature BDD libraries (packages) (CMU, Cal, CUDD)
- In a typical application, many BDDs have common subgraphs \Rightarrow pointers into a graph with unique root
- Memory management: reference counter and garbage collection
- Many optimizations and heuristics
- memory layout and traversal for efficient caching
- parallel and distributed algorithms, etc.

Dynamic variable reordering

- Variable ordering is critical for BDD size
- Functions exist with exponential size BDDs regardless of ordering (e.g., middle bit of a multiplier [Bryant'91])
- shape and size of BDDs evolves during computation
\Rightarrow dynamic variable reordering is important
- transparent for verification algorithms constructed on top
- reordering adjacent levels does not change pointers into BDD

BDD variants and applications

- choice of other decompositions for Boolean functions:
- OBDD: Boole-Shannon decomposition $f=\left.\left.\bar{x} \wedge f\right|_{x=0} \vee x \wedge f\right|_{x=1}=$ $\bar{x} \wedge f_{\bar{x}} \vee x \wedge f_{x}$
$-f=f_{\bar{x}} \oplus x \wedge f_{\delta x} \quad$ Reed-Muller decomposition
- $f=f_{x} \oplus \bar{x} \wedge f_{\delta x} \quad$ positive Davio decomposition
- Multiterminal BDDs: allow arbitrary terminal nodes (typically integers)
- BDDs for arithmetic representations: $f=x_{0}+2 * x_{1}+4 * x_{2}+\ldots$ Applications
- Mainly: CAD (equivalence checking) and formal verification
- Compact representations for data with some regularities/repetitions, but difficult to express analytically:
- coding theory, large data structures, indexing, computational biology

Symbolic model checking with BDDs

System represented as binary encoding for states and atomic propositions
\Rightarrow use BDDs for state sets, transition relation

$\operatorname{Check}(p)=\{s \in S \mid p \in L(s)\} \quad$ bd	bdd_if_then_else($p, 1,0$)
$\operatorname{Check}(\neg f)=S \backslash \operatorname{Check}(f)$	bdd_not
$\operatorname{Check}(f \wedge g)=\operatorname{Check}(f) \cap \operatorname{Check}(g)$	bdd_and
$\operatorname{Check}(\mathbf{E X} f)=\operatorname{CheckEX}(\operatorname{Check}(f))$	
CheckEX $(f(\bar{v}))=\exists \bar{v}^{\prime} \cdot\left[f\left(\bar{v}^{\prime}\right) \wedge R\left(\bar{v}, \bar{v}^{\prime}\right)\right]$	RelProd(f, R, \bar{v}^{\prime})
$\operatorname{Check}(\mathbf{E}[f \mathbf{U} g])=\operatorname{CheckEU}(\operatorname{Check}(f), \operatorname{Check}(g))$	
$\mathbf{E}\left[f_{1} \cup f_{2}\right]=\mu Z . f_{2} \vee\left(f_{1} \wedge \mathbf{E X} Z\right)$	algorithm Lfp
$\operatorname{Check}(\mathbf{E G} f)=\operatorname{CheckEG}(\operatorname{Check}(f))$	
$\mathbf{E G} f=\nu Z . f \wedge \mathbf{E X} Z$	algorithm Gfp

Partitioning the transition relation

Monolithic transition relation - grows - can become major obstacle in building system model to fit in memory

- disjunctive partitioning (asynchronous systems)

$$
R\left(\bar{v}, \bar{v}^{\prime}\right)=R_{1}\left(\bar{v}, \bar{v}^{\prime}\right) \vee \cdots \vee R_{n}\left(\bar{v}, \bar{v}^{\prime}\right)
$$

$$
\begin{aligned}
& \text { because of distributivity } \quad \exists \bar{v}^{\prime}\left[f\left(\bar{v}^{\prime}\right) \wedge R\left(\bar{v}, \bar{v}^{\prime}\right)\right]= \\
& =\exists \bar{v}^{\prime}\left[f\left(\bar{v}^{\prime}\right) \wedge R_{1}\left(\bar{v}, \bar{v}^{\prime}\right)\right] \vee \cdots \vee \exists \bar{v}^{\prime}\left[f\left(\bar{v}^{\prime}\right) \wedge R_{n}\left(\bar{v}, \bar{v}^{\prime}\right)\right]
\end{aligned}
$$

- conjunctive partitioning (for synchronous systems)
\exists does not distribute over \wedge, but may exploit locality (if R_{i} does not depend on all next-state variables \bar{v}^{\prime}):

$$
R\left(\bar{v}, \bar{v}^{\prime}\right)=R_{1}\left(\bar{v}, v_{1}^{\prime}\right) \wedge \cdots \wedge R_{n}\left(\bar{v}, v_{n}^{\prime}\right)
$$

$$
\begin{aligned}
\exists \bar{v}^{\prime}\left[f\left(\bar{v}^{\prime}\right)\right. & \left.\wedge R\left(\bar{v}, \bar{v}^{\prime}\right)\right]= \\
& =\exists v_{n}^{\prime}\left[\cdots \exists v_{1}^{\prime}\left[f\left(\bar{v}^{\prime}\right) \wedge R_{0}\left(\bar{v}, v_{1}^{\prime}\right] \wedge R_{1}\left(\bar{v}, v_{1}^{\prime}\right)\right] \cdots \wedge R_{n}\left(\bar{v}, v_{n}^{\prime}\right)\right]
\end{aligned}
$$

(perform conjunction and quantification successively for each component)

Symbolic model checking with fairness

Recall: fairness constraint is : $F=\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$, with $P_{i} \subseteq S$

EG f is true in the maximal set Z such that:

- all states of Z satisfy f
- $\forall P_{k} \in F, s \in Z$ there is a path from s to a state of $Z \cap P_{k}$
(passing only through states that satisfy f)
\Rightarrow can be expressed as fixpoint and thus computed symbolically

$$
\mathbf{E G}_{\text {fair }} f=\nu Z . f \wedge \wedge_{i=1}^{n} \mathbf{E X E}\left[f \mathbf{U}\left(Z \wedge P_{k}\right)\right]
$$

Likewise for the other fundamental operators:

$$
\begin{gathered}
\mathbf{E X}_{\text {fair }} f=\mathbf{E X}(f \wedge \text { fair }) \\
\mathbf{E U}_{\text {fair }}(f, g)=\mathbf{E} \mathbf{U}(f, g \wedge \text { fair })
\end{gathered}
$$

Counterexample generation

Main advantages of model checking:

- completely automated
- generates counterexamples that identify errors
- for existential formulas (E) : produces a witness path for which the formula is true
- for universal formulas (A): produces a counterexample
- counterexample for a universal formula is withess for its negation (its dual existential formula)

Witness for EF f

- minimal fixpoint: EF $f=\mu Z . f \vee \mathbf{E X} Z$
- compute and retain successive approximations $f=Q_{0} \subseteq Q_{1} \subseteq \ldots \subseteq$ Q_{k}
- Q_{k} : set of states from which f can be reached in at most k steps
- find intersection $Q_{k} \cap S_{0} \neq \emptyset$
(first traversal: backwards, symbolic)
- choose $s_{k} \in S_{0} \cap Q_{k}$
- compute set $\operatorname{Succ}\left(s_{k}\right)$ of successors for s_{k}
- must have nonempty intersection Q_{k-1} (from $s_{k} f$ is reachable in at most k steps, so there is a successor reaching it in $k-1$ steps)
- choose $s_{k-1} \in \operatorname{Succ}\left(s_{k}\right) \cap Q_{k-1}$, etc. until $Q_{0}=f$
(second traversal, forward, through individual states)
- we have found path $s_{k} \rightarrow \ldots \rightarrow s_{0}$ reaching f

