		Symbolic model checking, Binary decision diagrams 2 Explicit-state model checking		Symbolic model checking. Binary decision diagrams Exploration with individual states and sets Problem: compute set of states reachable from initial states (EF true) – by forward traversal of graph starting from initial states – R: set of explored states; F: frontier reached in current step	
		Need to represent each state individually ⇒ size of the state space severely limits applicability (size of a state determines how many states we can represent in memory) – typically, limited to a few million states			
		State space explosion problem: for comp	osed systems, state space	With individual states	With state sets
Symbolic model checking. Binary decision diagrams	is product of component state spaces \Rightarrow components \Rightarrow Much of focus in formal verification is so		$R = \emptyset; F = S_0$ while $(F \neq \emptyset)$ choose $s \in F$;	$R = \emptyset; F = S_0$ while $(F \not\subseteq R)$ $R \leftarrow R \cup F$	
20 oct. 2005		If reachable state set is much smaller than potential complete state space, can try to encode reached states using fewer bits (<i>bitstate hashing</i> , used in SPIN). However, this is an <i>approximation</i> : on reaching an already hashed state, search stops (even though actual state may be different) ⇒ part of state space may remain unexplored ⇒ method is not sound		$\begin{split} F &\leftarrow F \setminus \{s\}; \ R \leftarrow R \cup \{s\} & F = \{s' \in S \exists s \in F . s \to s'\} \\ forall s' \text{ with } s \to s' & // \text{ or } F = F \setminus R \\ \mathbf{if} s' \notin F \cup R & // \text{ with test } F \neq \emptyset \\ F \leftarrow F \cup \{s'\} \\ \Rightarrow \text{Algorithm can be expressed much easier is successor set of a state set can be computed in a single operation} \\ \Rightarrow \text{set } R \text{ of reached states grows in each iteration but is finite} \end{split}$	

Symbolic model checking. Binary decision diagrams

Symbolic model checking

- A new approach, based on exploring state sets
- idea: a set may sometimes be represented (by a forumula) in a much more compact way than individually representing each state
 need: efficient representation and manipulation for state sets and transition relation

[McMillan'92]

- with binary decision diagrams (BDDs) [Bryant'86]
- key idea 1: working with state sets
- used also for infinite state sets (continuous-time or hybrid systems)
- key idea 2: iterative computation until no more change ⇒notion of *fixpoint*

Formal verification. Lecture 3	
--------------------------------	--

Marius Minea

Symbolic model checking. Binary decision diagrams Fixpoint representations

Def: $x \in D$ is a *fixpoint* for $f: D \to D$ if f(x) = x. Def: A *lattice* is a partially ordered set in which any finite subset has a least upper bound and a greatest lower bound Ex: powerset (set of subsets) $\mathcal{P}(S)$ of S, with \subseteq as order

- We work with functions $\tau : \mathcal{P}(S) \to \mathcal{P}(S)$ over the *lattice* $\mathcal{P}(S)$

- We regard $S' \subseteq S$ as a predicate over S: $S'(s) = true \Leftrightarrow s \in S'$

în particular: $\emptyset = false, S = true$

 $\Rightarrow \tau : \mathcal{P}(S) \to \mathcal{P}(S)$ is a predicate transformer

- τ is monotone if $P \subseteq Q \Rightarrow \tau(P) \subseteq \tau(Q)$
- τ is union-continuous if for any sequence $P_1 \subseteq P_2 \subseteq \ldots$ we have $\tau(\cup_i P_i) = \cup_i \tau(P_i)$
- τ is intersection-continuous if for any sequence $P_1 \supseteq P_2 \supseteq \ldots$ we have $\tau(\cap_i P_i) = \cap_i \tau(P_i)$ Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams

Fixpoint theorems

A monotone predicate transformer over $\mathcal{P}(S)$ always has - a minimal fixpoint, denoted $\mu Z.\tau(Z)$ - and a maximal fixpoint, denoted $\nu Z.\tau(Z)$ [Tarski] If *S* is finite and τ is monotone, then τ is continuous for union and intersection. τ monotone $\Rightarrow \tau^i(False) \subseteq \tau^{i+1}(False)$ si $\tau^i(True) \supseteq \tau^{i+1}(True)$ If τ is monotone and *S* is finite, there exist $i, j \ge 0$ such that $\forall k \ge i, \tau^k(False) = \tau^i(False)$ and $\forall k \ge j, \tau^k(True) = \tau^j(True)$ If τ is monotone and *S* is finite, there exist $i, j \ge 0$ such that $\forall k \ge i, \tau^k(False) = \tau^i(False)$ and $\forall k \ge j, \tau^k(True) = \tau^j(True)$

 $\mu Z.\tau(Z) = \tau^i(False)$ and $\nu Z.\tau(Z) = \tau^j(True)$

Formal verification. Lecture 3

5

Marius Minea

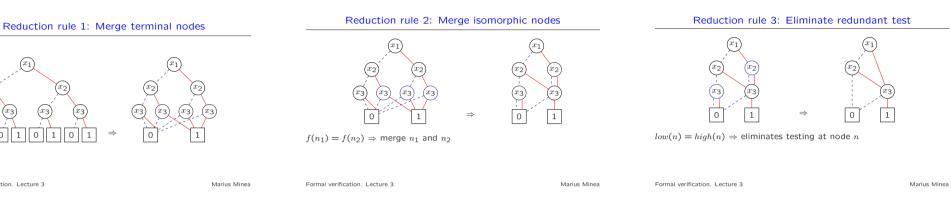
6

Symbolic model checking. Binary decision diagrams 7	Symbolic model checking. Binary decision diagrams	8	Symbolic model checking. Binary decision diagrams	
	Fixpoint relations for	or CTL	Symbolic model checking al	gorithm
Computing the minimal/maximal fixpoint	We identify a CTL formula f with the set of states that satisfy it: { $s \mid M, s \models f$ }		- works by structural decomposition of the formula $Check(f)$ returns $\{s \in S \mid M, s \models f\}$ (set of states satisfying f) $Check(p) = \{s \in S \mid p \in L(s)\}$ atomic proposition:	
$ \begin{array}{ll} \mbox{function } Lfp(\tau:Trans):Pred & \mbox{function } Gfp(\tau:Trans):Pred \\ Q:=False; & Q:=True; \\ Q':=\tau(Q); & Q':=\tau(Q); \\ \mbox{while } (Q'\neq Q) \mbox{ do } & \mbox{while } (Q'\neq Q) \mbox{ do } \\ Q:=Q'; & Q:=Q'; \\ Q':=\tau(Q); & Q':=\tau(Q); \\ \mbox{return } Q; & \mbox{return } Q; \\ \end{array} $	• AF $f = \mu Z \cdot f \lor \mathbf{A}\mathbf{X} Z$ • AG $f = \nu Z \cdot f \land \mathbf{A}\mathbf{X} Z$ • A $[f_1 \cup f_2] = \mu Z \cdot f_2 \lor (f_1 \land \mathbf{A}\mathbf{X} Z)$ • E $[f_1 \cup f_2] = \mu Z \cdot f_2 \lor (f_1 \land \mathbf{E}\mathbf{X} Z)$ • A $[f_1 \mathbf{R} f_2] = \nu Z \cdot f_2 \land (f_1 \lor \mathbf{A}\mathbf{X} Z)$ • E $[f_1 \mathbf{R} f_2] = \nu Z \cdot f_2 \land (f_1 \lor \mathbf{E}\mathbf{X} Z)$ minimal fixpoint: liveness properties: F maximal fixpoint: safety properties (invariants)	$\mathbf{EF} f = \mu Z \cdot f \lor \mathbf{EX} Z$ $\mathbf{EG} f = \nu Z \cdot f \land \mathbf{EX} Z$ ants): G	Check(p) = {s \in S p \in L(s)} Check($\neg f$) = S \ Check(f) Check($f \land g$) = Check(f) \cap Check(g) Check(EX f) = CheckEX(Check(f)) Check(EX f) = CheckEU(Check(f)) Check(E [f U g]) = CheckEU(Check(f), Check(g) using E [f ₁ U f ₂] = $\mu Z \cdot f_2 \vee (f_1 \land \mathbf{EX} Z)$ si Check(EG f) = CheckEG(Check(f)) using EG f = $\nu Z \cdot f \land \mathbf{EX} Z$ and the functi All of these basic operations can be expressed	complement intersection relational product))) funcția <i>Lfp</i> onal <i>Gfp</i>
Formal verification. Lecture 3 Marius Minea	Formal verification. Lecture 3	Marius Minea	Formal verification. Lecture 3	Marius Minea
Symbolic model checking. Binary decision diagrams 10	Symbolic model checking. Binary decision diagrams	11	Symbolic model checking. Binary decision diagrams	
Symbolic model checking. Binary decision diagrams 10			Binary decision trees	
Symbolic model checking. Binary decision diagrams 10 Binary Decision Diagrams (BDDs)	Representations for Boole	ean functions	Binary decision trees • terminal nodes: function value (0 or 1) • nonterminal nodes: variables	
		ean functions and transition relations rnaugh diagrams, canonical fucts, factorizations, etc. unctions (e.g. parity) o exponential growth (e.g., ifficult to test: hanges in circuit design) = 1 ?	Binary decision trees • terminal nodes: function value (0 or 1)	right): ariable in the node

13

17

Symbolic model checking. Binary decision diagrams



Formal verification. Lecture 3

18

Basic BDD properties

The 3 rules can be applied whatever the variable ordering down the tree.

In an *ordered* BDD (OBDD): one additional condition: On all paths from root to terminals, variables appear in same order (there exists a global ordering of variables)

Theorem: For any Boolean function, its representation as an ordered BDD, reduced according to rules 1-3 is *unique* up to isomorphism. \Rightarrow *canonical* representation

 \Rightarrow equivalence or satisfiability checking in constant time

Note: A subgraph rooted as a BDD node is also a BDD \Rightarrow BDDs for several functions may share subgraphs in the same forest

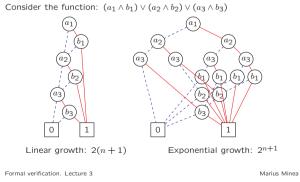
Formal verification. Lecture 3

Marius Minea

16

Effect of variable ordering

Symbolic model checking. Binary decision diagrams



Symbolic model checking. Binary decision diagrams BDD algorithms: Apply function Apply(f, g: OBDD, op : Operator) : OBDDif $is_leaf(f) \land is_leaf(g)$ return op(f,g); elsif (f, g, op, h) in apply_cache return h; else x := topvar(f) // variable at root of fy := topvar(g)if (ord(x) = ord(y)) / x = y = same variable $h := find_bdd(x, Apply(f \mid_{x=0}, g \mid_{x=0}, op), Apply(f \mid_{x=1}, g \mid_{x=1}, op))$ // find_bdd creates a new BDD if not already existent elsif $(ord(x) < ord(y)) / / \times$ before y in ordering $h := find_bdd(x, Apply(f \mid_{x=0}, g, op), Apply(f \mid_{x=1}, g, op))$ else $h := find_bdd(y, Apply(f, g |_{y=0}, op), Apply(f, g |_{y=1}, op))$ insert (f, g, op, h) in apply_cache return h Formal verification. Lecture 3 Marius Minea

function Relprod($f, g : OBDD, E : varset$) : OBDD if $f = false \lor g = false$ return $false$ elsif $f = true \land g = true$ return $true$ elsif (f, g, E, h) in relprod_cache return h		Complexity of BDD algorithms			
		• Reduction (to canonical form) $O(G \cdot \log G)$ • Apply $(f_1 \langle op \rangle f_2)$ $O(G_1 \cdot G_2)$		Implementation	
Place $\begin{aligned} x &:= topvar(f) // \text{ variable at root of } f \\ y &:= topvar(g) \\ z &:= topmost(x, y) // \text{ first in variable order} \\ h_0 &:= RelProd(f _{z=0}, g _{z=0}, E) \\ h_1 &:= RelProd(f _{z=1}, g _{z=1}, E) \\ \text{if } z &\in E h := bdd_cr(h_0, h_1) /* \exists z . h = h_0 \lor h_1 */ \\ else h &:= bdd_f.then.else(z, h_1, h_0) \\ \text{insert } (f, g, E, h) \text{ in relprod_cache} \\ \textbf{return } h \end{aligned}$		• Restrict $(f \mid_{x_i=b})$ • Compose $(f_1 \mid_{x_i=f_2})$ • Satisfy-one (un \bar{x} cu $f(\bar{x}) = 1$) • Satisfy-count ($ \{\bar{x} \mid f(\bar{x}) = 1\} $) Logarithmic factors can be eliminated (by more sophisticated algorithms or hashing) Relational product may have exponential compl	$O(G \cdot \log G)$ $O(G_1 ^2 \cdot G_2)$ $O(n)$ $O(G)$ lexity	 There are mature BDD libraries (packa In a typical application, many BDDs ha ⇒ pointers into a graph with unique ro Memory management: reference counted Many optimizations and heuristics memory layout and traversal for effici parallel and distributed algorithms, et 	ive common subgraphs ot er and garbage collection ient caching
ormal verification. Lecture 3	Marius Minea	Formal verification. Lecture 3	Marius Minea	Formal verification. Lecture 3	Marius Minea
iymbolic model checking. Binary decision diagrams Dynamic variable reordering	22	Symbolic model checking. Binary decision diagrams BDD variants and applica	23 tions	Symbolic model checking. Binary decision diagrams Symbolic model checking	24 g with BDDs
Dynamic variable reordering • Variable ordering is critical for BDD size • Functions exist with exponential size BDDs regardless or (e.g., middle bit of a multiplier [Bryant'91])			tions functions:		g with BDDs r states and atomic proposi-
Dynamic variable reordering Variable ordering is critical for BDD size Functions exist with exponential size BDDs regardless or	of ordering top	BDD variants and application • choice of other decompositions for Boolean f – OBDD: Boole-Shannon decomposition $f = \bar{x} \wedge f_{\bar{x}} \vee x \wedge f_x$ – $f = f_{\bar{x}} \oplus x \wedge f_{\delta x}$ Reed – $f = f_x \oplus \bar{x} \wedge f_{\delta x}$ positive • Multareminal BDDs: allow arbitrary terminal gers) • BDDs for arithmetic representations: $f = x_0$ · Applications	tions functions: $\bar{x} \wedge f _{x=0} \lor x \wedge f _{x=1} =$ Huller decomposition to Davio decomposition to nodes (typically inte- $+ 2 * x_1 + 4 * x_2 +$	Symbolic model checking System represented as binary encoding for tions \Rightarrow use BDDs for state sets, transition relation $Check(p) = \{s \in S \mid p \in L(s)\}$ $Check(\neg f) = S \setminus Check(f)$ $Check(f \land g) = Check(f) \cap Check(g)$ $Check(EX(f)) = \exists v' \cdot [f(v') \land R(v, v')]$	g with BDDs r states and atomic proposi- ation $bdd_if_then_else(p, 1, 0)$ bdd_not bdd_and)] $RelProd(f, R, \overline{v}')$
Dynamic variable reordering Variable ordering is critical for BDD size Functions exist with exponential size BDDs regardless of (e.g., middle bit of a multiplier [Bryant'91]) shape and size of BDDs evolves during computation ⇒ dynamic variable reordering is important - transparent for verification algorithms constructed on	of ordering top	BDD variants and applicat • choice of other decompositions for Boolean f $-$ OBDD: Boole-Shannon decomposition $f = \bar{x} \wedge f_{\bar{x}} \vee x \wedge f_x$ $-f = f_{\bar{x}} \oplus x \wedge f_{\delta x}$ Reed $-f = f_x \oplus \bar{x} \wedge f_{\delta x}$ positive • Multiterminal BDDs: allow arbitrary terminal gers) • BDDs for arithmetic representations: $f = x_0$	tions functions: $\bar{x} \wedge f _{x=0} \forall x \wedge f _{x=1} =$ Huller decomposition a Davio decomposition I nodes (typically inte- $+ 2 * x_1 + 4 * x_2 +$ mal verification regularities/repetitions,	Symbolic model checking System represented as binary encoding for tions \Rightarrow use BDDs for state sets, transition relation $Check(p) = \{s \in S \mid p \in L(s)\}$ $Check(\neg f) = S \setminus Check(f)$ $Check(f \land g) = Check(f) \cap Check(g)$ $Check(\mathbf{EX} f) = CheckEX(Check(f))$	g with BDDs r states and atomic proposi- ation $bdd_if_then_else(p, 1, 0)$ bdd_not bdd_and)] $RelProd(f, R, \overline{v}')$

Symbolic model checking. Binary decision diagrams Partitioning the transition relation	25	Symbolic model checking. Binary decision diagrams Symbolic model checking	26 with fairness	Symbolic model checking. Binary decision diagrams Counterexample gener	27 ration
Monolithic transition relation – grows – can become major obstacle in building system model to fit in memory • <i>disjunctive</i> partitioning (asynchronous systems) $R(\bar{v}, \bar{v}') = R_1(\bar{v}, \bar{v}') \vee \cdots \vee R_n(\bar{v}, \bar{v}')$		Recall: fairness constraint is : $F = \{P_1, P_2, EG f \text{ is true in the maximal set } Z \text{ such tha} - all states of Z satisfy f$		Main advantages of model checking: – completely automated – generates counterexamples that identify errors	
because of distributivity $\exists \overline{v}'[f(\overline{v}') \land R(\overline{v}, \overline{v}')] =$ = $\exists \overline{v}'[f(\overline{v}') \land R_1(\overline{v}, \overline{v}')] \lor \cdots \lor \exists \overline{v}'[f(\overline{v}') \land R_n(\overline{v}, \overline{v}')]$ • conjunctive partitioning (for synchronous systems)		$- \forall P_k \in F, s \in \mathbb{Z}$ there is a path from s to a (passing only through states that satisfy f)	10	 for existential formulas (E) : produces a the formula is true 	a <i>witness</i> path for which
∃ does not distribute over ∧, but may exploit locality (if R_i does not depend on all next-state variables \overline{v}'): $R(\overline{v}, \overline{v}') = R_1(\overline{v}, v_1') \land \dots \land R_n(\overline{v}, v_n')$		\Rightarrow can be expressed as fixpoint and thus co $\mathbf{EG}_{fair}f=\nu Z\cdot f\wedge \wedge_{i=1}^{n}\mathbf{EXE}$		ullet for universal formulas ($m A$): produces a co	ounterexample
$\begin{aligned} \exists \vec{v}'[f(\vec{v}') \land R(\vec{v}, \vec{v}')] &= \\ &= \exists v'_n[\cdots \exists v'_1[f(\vec{v}') \land R_0(\vec{v}, v'_1] \land R_1(\vec{v}, v'_1)] \cdots \land R_n(\vec{v}, v'_n)] \\ (\text{perform conjunction and quantification successively for each component}) \end{aligned}$		Likewise for the other fundamental operato $\mathbf{EX}_{fair} f = \mathbf{EX} (f \land \mathbf{EU}_{fair} (f,g) = \mathbf{EU} (f,g)$	fair)	• counterexample for a universal formula is withess for its negation (its dual existential formula)	
Formal verification. Lecture 3	larius Minea	Formal verification. Lecture 3	Marius Minea	Formal verification. Lecture 3	Marius Minea

Symbolic model checking. Binary decision diagrams

Witness for **EF** f

- minimal fixpoint: $\mathbf{EF} f = \mu Z \cdot f \lor \mathbf{EX} Z$
- compute and retain successive approximations $f=Q_0\subseteq Q_1\subseteq\ldots\subseteq$ Q_k
- $-Q_k$: set of states from which f can be reached in at most k steps
- find intersection $Q_k \cap S_0 \neq \emptyset$
- (first traversal: backwards, symbolic)
- choose $s_k \in S_0 \cap Q_k$
- compute set $Succ(s_k)$ of successors for s_k
- must have nonempty intersection Q_{k-1} (from $s_k f$ is reachable in at
- most k steps, so there is a successor reaching it in k-1 steps)
- choose $s_{k-1} \in Succ(s_k) \cap Q_{k-1}$, etc. until $Q_0 = f$
- (second traversal, forward, through individual states)
- we have found path $s_k \to \ldots \to s_0$ reaching f

Marius Minea

28