
Symbolic model checking. Binary decision diagrams

20 oct. 2005

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 2

Explicit-state model checking

Need to represent each state individually

⇒ size of the state space severely limits applicability (size of a state

determines how many states we can represent in memory)

– typically, limited to a few million states

State space explosion problem: for composed systems, state space

is product of component state spaces ⇒ exponential in number of

components

⇒ Much of focus in formal verification is scaling to large state spaces

If reachable state set is much smaller than potential complete state

space, can try to encode reached states using fewer bits

(bitstate hashing, used in SPIN).

However, this is an approximation: on reaching an already hashed

state, search stops (even though actual state may be different)

⇒ part of state space may remain unexplored

⇒ method is not sound

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 3

Exploration with individual states and sets

Problem: compute set of states reachable from initial states

(EF true)

– by forward traversal of graph starting from initial states

– R: set of explored states; F : frontier reached in current step

With individual states

R = ∅; F = S0

while (F 6= ∅)

choose s ∈ F ;

F ← F \ {s}; R← R ∪ {s}

forall s′ with s→ s′

if s′ 6∈ F ∪R

F ← F ∪ {s′}

With state sets

R = ∅; F = S0

while (F 6⊆ R)

R← R ∪ F

F = {s′ ∈ S|∃s ∈ F . s→ s′}

// or F = F \R

// with test F 6= ∅

⇒Algorithm can be expressed much easier is successor set of a state

set can be computed in a single operation

⇒set R of reached states grows in each iteration but is finite

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 4

Symbolic model checking

• A new approach, based on exploring state sets

– idea: a set may sometimes be represented (by a forumula) in a

much more compact way than individually representing each state

– need: efficient representation and manipulation for state sets and

transition relation

[McMillan’92]

– with binary decision diagrams (BDDs) [Bryant’86]

• key idea 1: working with state sets

– used also for infinite state sets (continuous-time or hybrid systems)

• key idea 2: iterative computation until no more change

⇒notion of fixpoint

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 5

Fixpoint representations

Def: x ∈ D is a fixpoint for f : D → D if f(x) = x.

Def: A lattice is a partially ordered set in which any finite subset has

a least upper bound and a greatest lower bound

Ex: powerset (set of subsets) P(S) of S, with ⊆ as order

– We work with functions τ : P(S)→ P(S) over the lattice P(S)

– We regard S′ ⊆ S as a predicate over S: S′(s) = true⇔ s ∈ S′

ı̂n particular: ∅ = false, S = true

⇒ τ : P(S)→ P(S) is a predicate transformer

Def:

• τ is monotone if P ⊆ Q⇒ τ(P) ⊆ τ(Q)

• τ is union-continuous if for any sequence P1 ⊆ P2 ⊆ . . . we have

τ(∪iPi) = ∪iτ(Pi)

• τ is intersection-continuous if for any sequence P1 ⊇ P2 ⊇ . . . we

have τ(∩iPi) = ∩iτ(Pi)
Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 6

Fixpoint theorems

A monotone predicate transformer over P(S) always has

– a minimal fixpoint, denoted µZ.τ(Z)

– and a maximal fixpoint, denoted νZ.τ(Z) [Tarski]

If S is finite and τ is monotone, then τ is continuous for union and

intersection.

τ monotone ⇒ τ i(False) ⊆ τ i+1(False) şi τ i(True) ⊇ τ i+1(True)

If τ is monotone and S is finite, there exist i, j ≥ 0 such that

∀k ≥ i, τk(False) = τ i(False) and ∀k ≥ j, τk(True) = τ j(True)

If τ is monotone and S is finite, there exist i, j ≥ 0 such that

µZ.τ(Z) = τ i(False) and νZ.τ(Z) = τ j(True)

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 7

Computing the minimal/maximal fixpoint

function Lfp(τ : Trans) : Pred

Q := False;

Q′ := τ(Q);

while (Q′ 6= Q) do

Q := Q′;

Q′ := τ(Q);

return Q;

functionGfp(τ : Trans) : Pred

Q := True;

Q′ := τ(Q);

while (Q′ 6= Q) do

Q := Q′;

Q′ := τ(Q);

return Q;

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 8

Fixpoint relations for CTL

We identify a CTL formula f with the set of states that satisfy it:

{s |M, s |= f}

• AF f = µZ . f ∨AXZ EF f = µZ . f ∨EXZ

• AG f = νZ . f ∧AXZ EG f = νZ . f ∧EXZ

• A [f1 U f2] = µZ . f2 ∨ (f1 ∧AXZ)

• E [f1 U f2] = µZ . f2 ∨ (f1 ∧EXZ)

• A [f1 R f2] = νZ . f2 ∧ (f1 ∨AXZ)

• E [f1 R f2] = νZ . f2 ∧ (f1 ∨EXZ)

minimal fixpoint: liveness properties: F

maximal fixpoint: safety properties (invariants): G

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 9

Symbolic model checking algorithm

– works by structural decomposition of the formula

Check(f) returns {s ∈ S |M, s |= f} (set of states satisfying f)

Check(p) = {s ∈ S | p ∈ L(s)} atomic propositions

Check(¬f) = S \Check(f) complement

Check(f ∧ g) = Check(f) ∩ Check(g) intersection

Check(EX f) = CheckEX(Check(f))

CheckEX(f(v̄)) = ∃v̄′ . [f(v̄′) ∧R(v̄, v̄′)] relational product

Check(E [f U g]) = CheckEU(Check(f), Check(g))

using E [f1 U f2] = µZ . f2 ∨ (f1 ∧EXZ) şi funcţia Lfp

Check(EG f) = CheckEG(Check(f))

using EG f = νZ . f ∧EXZ and the functional Gfp

All of these basic operations can be expressed using BDDs

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 10

Binary Decision Diagrams (BDDs)

• a canonical and compact representation of Boolean functions

• with efficient manipulation algorithms

[R. Bryant, “Graph-based algorithms for boolean function manipulation”,

IEEE Transactions on Computers, 1986]

• significant impact on formal verification:

ACM Kanellakis Award for Theory & Practice, 1998

– Randal E. Bryant: BDDs (’86)

– Edmund M. Clarke, E. Allen Emerson: model checking (’81)

– Ken McMillan: symbolic model checking (’92)

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 11

Representations for Boolean functions

f : Bn → B – can encode both state sets and transition relations

• Usual representations (truth tables, Karnaugh diagrams, canonical

sum of minterms) have exponential size

• ⇒ improvements: reduced sums of products, factorizations, etc.

– still exponentiale for some common functions (e.g. parity)

• some elementary operations may lead to exponential growth (e.g.,

negation)

• for non-canonical representations it is difficult to test:

– equivalence (checking needed after changes in circuit design)

– satisfiability: ∃x1, · · ·xn . f(x1, · · · , xn) = 1 ?

∀x . f1(x) = f2(x) ≡ ¬∃x . f1(x)⊕ f2(x) = 1

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 12

Binary decision trees

• terminal nodes: function value (0 or 1)

• nonterminal nodes: variables

• branches (children): low(v) (left) / high(v) (right):

correspond to assignment of 0 or 1 for the variable in the node

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1

BDDs: obtained from binary decision trees applying 3 reduction rules

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 13

Reduction rule 1: Merge terminal nodes

x1

x2 x2

x3 x3 x3 x3

0 0 0 1 0 1 0 1 ⇒

x1

x2 x2

x3 x3 x3 x3

0 1

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 14

Reduction rule 2: Merge isomorphic nodes

x1

x2 x2

x3 x3 x3 x3

0 1 ⇒

x1

x2 x2

x3 x3

0 1

f(n1) = f(n2) ⇒ merge n1 and n2

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 15

Reduction rule 3: Eliminate redundant test

x1

x2 x2

x3 x3

0 1 ⇒

x1

x2

x3

0 1

low(n) = high(n) ⇒ eliminates testing at node n

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 16

Basic BDD properties

The 3 rules can be applied whatever the variable ordering down the

tree.

In an ordered BDD (OBDD): one additional condition:

On all paths from root to terminals, variables appear in same order

(there exists a global ordering of variables)

Theorem: For any Boolean function, its representation as an ordered

BDD, reduced according to rules 1–3 is unique up to isomorphism.

⇒ canonical representation

⇒ equivalence or satisfiability checking in constant time

Note: A subgraph rooted as a BDD node is also a BDD

⇒ BDDs for several functions may share subgraphs in the same forest

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 17

Effect of variable ordering

Consider the function: (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)

a1

b1

a2

b2

a3

b3

0 1

a1

a2 a2

a3 a3 a3 a3

b1 b1 b1 b1

b2 b2

b3

0 1

Linear growth: 2(n + 1) Exponential growth: 2n+1

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 18

BDD algorithms: Apply

functionApply(f, g : OBDD, op : Operator) : OBDD

if is leaf(f) ∧ is leaf(g) return op(f, g);

elsif (f, g, op, h) in apply cache return h;

else

x := topvar(f) // variable at root of f

y := topvar(g)

if (ord(x) = ord(y)) // x = y = same variable

h := find bdd(x,Apply(f |x=0, g |x=0, op),Apply(f |x=1, g |x=1, op))

// find bdd creates a new BDD if not already existent

elsif (ord(x) < ord(y)) // x before y in ordering

h := find bdd(x,Apply(f |x=0, g, op),Apply(f |x=1, g, op))

else h := find bdd(y,Apply(f, g |y=0, op),Apply(f, g |y=1, op))

insert (f, g, op, h) in apply cache

return h

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 19

BDD algorithms: relational product

functionRelprod(f, g : OBDD, E : varset) : OBDD

if f = false ∨ g = false return false

elsif f = true ∧ g = true return true

elsif (f, g, E, h) in relprod cache return h

else

x := topvar(f) // variable at root of f

y := topvar(g)

z := topmost(x, y) // first in variable order

h0 := RelProd(f |z=0, g |z=0, E)

h1 := RelProd(f |z=1, g |z=1, E)

if z ∈ E h := bdd or(h0, h1) /* ∃z . h = h0 ∨ h1 */

else h := bdd if then else(z, h1, h0)

insert (f, g, E, h) in relprod cache

return h

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 20

Complexity of BDD algorithms

• Reduction (to canonical form) O(|G| · log |G|)

• Apply (f1〈op〉f2) O(|G1| · |G2|)

• Restrict (f |xi=b) O(|G| · log |G|)

• Compose (f1 |xi=f2
) O(|G1|

2 · |G2|)

• Satisfy-one (un x̄ cu f(x̄) = 1) O(n)

• Satisfy-count (|{x̄ | f(x̄) = 1}|) O(|G|)

Logarithmic factors can be eliminated

(by more sophisticated algorithms or hashing)

Relational product may have exponential complexity

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 21

Implementation

• There are mature BDD libraries (packages) (CMU, Cal, CUDD)

• In a typical application, many BDDs have common subgraphs

⇒ pointers into a graph with unique root

• Memory management: reference counter and garbage collection

• Many optimizations and heuristics

– memory layout and traversal for efficient caching

– parallel and distributed algorithms, etc.

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 22

Dynamic variable reordering

• Variable ordering is critical for BDD size

• Functions exist with exponential size BDDs regardless of ordering

(e.g., middle bit of a multiplier [Bryant’91])

• shape and size of BDDs evolves during computation

⇒ dynamic variable reordering is important

– transparent for verification algorithms constructed on top

– reordering adjacent levels does not change pointers into BDD

xi-1

xi xi

f

f0 f1

f00 f01 f10 f11

xixi xi

xi-1 xi-1

ff0 f1

f00 f01 f10 f11

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 23

BDD variants and applications

• choice of other decompositions for Boolean functions:

– OBDD: Boole-Shannon decomposition f = x̄∧f |x=0 ∨x∧f |x=1=

x̄ ∧ fx̄ ∨ x ∧ fx

– f = fx̄ ⊕ x ∧ fδx Reed-Muller decomposition

– f = fx ⊕ x̄ ∧ fδx positive Davio decomposition

• Multiterminal BDDs: allow arbitrary terminal nodes (typically inte-

gers)

• BDDs for arithmetic representations: f = x0 + 2 ∗ x1 + 4 ∗ x2 + ...

Applications

• Mainly: CAD (equivalence checking) and formal verification

• Compact representations for data with some regularities/repetitions,

but difficult to express analytically:

– coding theory, large data structures, indexing, computational bi-

ology

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 24

Symbolic model checking with BDDs

System represented as binary encoding for states and atomic proposi-

tions

⇒ use BDDs for state sets, transition relation

Check(p) = {s ∈ S | p ∈ L(s)} bdd if then else(p,1,0)

Check(¬f) = S \Check(f) bdd not

Check(f ∧ g) = Check(f) ∩ Check(g) bdd and

Check(EX f) = CheckEX(Check(f))

CheckEX(f(v̄)) = ∃v̄′ . [f(v̄′) ∧R(v̄, v̄′)] RelProd(f, R, v̄′)

Check(E [f U g]) = CheckEU(Check(f), Check(g))

E [f1 U f2] = µZ . f2 ∨ (f1 ∧EXZ) algorithm Lfp

Check(EG f) = CheckEG(Check(f))

EG f = νZ . f ∧EXZ algorithm Gfp

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 25

Partitioning the transition relation

Monolithic transition relation – grows – can become major obstacle in

building system model to fit in memory

• disjunctive partitioning (asynchronous systems)

R(v̄, v̄′) = R1(v̄, v̄′) ∨ · · · ∨Rn(v̄, v̄′)

because of distributivity ∃v̄′[f(v̄′) ∧R(v̄, v̄′)] =

= ∃v̄′[f(v̄′) ∧R1(v̄, v̄′)] ∨ · · · ∨ ∃v̄′[f(v̄′) ∧Rn(v̄, v̄′)]

• conjunctive partitioning (for synchronous systems)

∃ does not distribute over ∧, but may exploit locality

(if Ri does not depend on all next-state variables v̄′):

R(v̄, v̄′) = R1(v̄, v′1) ∧ · · · ∧Rn(v̄, v′n)

∃v̄′[f(v̄′) ∧R(v̄, v̄′)] =

= ∃v′n[· · · ∃v
′
1[f(v̄′) ∧R0(v̄, v′1] ∧R1(v̄, v′1)] · · · ∧Rn(v̄, v′n)]

(perform conjunction and quantification successively for each compo-

nent)

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 26

Symbolic model checking with fairness

Recall: fairness constraint is : F = {P1, P2, · · · , Pn}, with Pi ⊆ S

EG f is true in the maximal set Z such that:

– all states of Z satisfy f

– ∀Pk ∈ F, s ∈ Z there is a path from s to a state of Z ∩ Pk

(passing only through states that satisfy f)

⇒ can be expressed as fixpoint and thus computed symbolically

EG fairf = νZ . f ∧
∧n

i=1EXE [f U (Z ∧ Pk)]

Likewise for the other fundamental operators:

EX fair f = EX (f ∧ fair)

EU fair (f, g) = EU (f, g ∧ fair)

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 27

Counterexample generation

Main advantages of model checking:

– completely automated

– generates counterexamples that identify errors

• for existential formulas (E) : produces a witness path for which

the formula is true

• for universal formulas (A): produces a counterexample

• counterexample for a universal formula is withess for its negation

(its dual existential formula)

Formal verification. Lecture 3 Marius Minea

Symbolic model checking. Binary decision diagrams 28

Witness for EF f

– minimal fixpoint: EF f = µZ . f ∨EXZ

– compute and retain successive approximations f = Q0 ⊆ Q1 ⊆ . . . ⊆

Qk

– Qk: set of states from which f can be reached in at most k steps

– find intersection Qk ∩ S0 6= ∅

(first traversal: backwards, symbolic)

– choose sk ∈ S0 ∩Qk

– compute set Succ(sk) of successors for sk

– must have nonempty intersection Qk−1 (from sk f is reachable in at

most k steps, so there is a successor reaching it in k − 1 steps)

– choose sk−1 ∈ Succ(sk) ∩Qk−1, etc. until Q0 = f

(second traversal, forward, through individual states)

– we have found path sk → . . .→ s0 reaching f

Formal verification. Lecture 3 Marius Minea

