Partial order reduction Model checking with automata

27 October 2005

Model checking "on-the-fly"

System state space = cartesian product for components: $S = S_1 \times \ldots \times S_n$

⇒ exponential if number of components; may be impossible to build

Specifications given as automata can *guide* verification algorithms:

⇒ only the needed parts of state space are constructed

Approach: build automaton $\mathcal S$ from negation of specification

From product state s = (r, q) with $r \in \mathcal{A}$ (system) and $q \in \mathcal{S}$ (spec):

- consider only those successors of r labeled the same as transitions from \boldsymbol{q}
- if counterexample found, terminate without exploring entire state
 space

Partial order reduction methods

Basic idea: build reduced model

- state space and execution paths are subsets of full (original) model
- preserves the same properties as original model

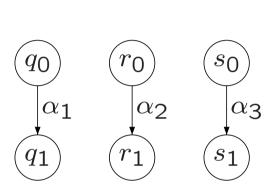
Approach is sound if exluded states/paths bring no extra information

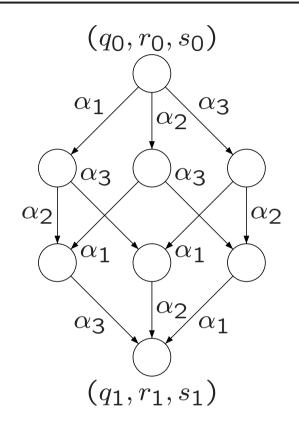
- must determine an equivalence relation between paths
- such that specification cannot distinguish between equivalent paths
- reduced model should contain a representative from each equivalence class

Method named initially after partial ordering of executed transitions

More generic term: model checking using representatives

An intuitive view





Asynchronous composition \Rightarrow arbitrary ordering of concurrent events \Rightarrow n transitions generate n! orderings and 2^n states

⇒ combinatorial (exponential) "explosion" of resulting state space

Tranzitions. Dependence and independence

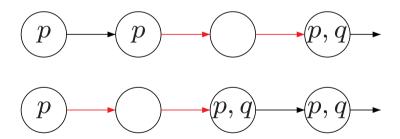
```
Model: state-transition system (S, T, S_0, L)
A transition \alpha \in T is a subset \alpha \subseteq S \times S
(viewed as a family of transitions with the same label)
Transition is enabled in s: \alpha \in enabled(s) \Leftrightarrow \exists s' \in S . \alpha(s,s')
We consider only deterministic transitions: \forall \alpha, s \exists ! s' : \alpha(s, s')
– the system may still be nondeterministic if |enabled(s)| > 1
Independence: two conditions, \forall s \in S:
Enabling: \alpha, \beta \in enabled(s) \Rightarrow \alpha \in enabled(\beta(s)) \land \beta \in enabled(\alpha(s))
- two independent transitions do not disable each other

    but one may lead to the other being enabled

Commutativity: \alpha, \beta \in enabled(s) \Rightarrow \alpha(\beta(s)) = \beta(\alpha(s))
- effect of execution same, regardless of ordering
```

Visible transitions

Visibility (with respect to $AP' \subseteq AP$) $\alpha \in T$ invisible $\Leftrightarrow \forall s, s' \in S, s' = \alpha(s) \Rightarrow L(s) \cap AP' = L(s') \cap AP'$ (does not change labeling with propositions from AP') typically: AP' = atomic propositions from specification



In asynchronous composition, the next-time operator \mathbf{X} is not relevant:

- two transitions in different components can occur in any order
- two transitions in the same component can be separated by arbitrarily many transitions in other components \Rightarrow the *local* state stays the same

Two infinite paths $\pi = s_0 s_1 \dots$ and $\pi' = r_0 r_1 \dots$ are stuttering equivalent $\pi \sim_{st} \pi'$ if they can be split into pairwise corresponding finite blocks of identically labelled states

 \exists infinite sequences $0 = i_0 < i_1 < \dots$ and $0 = j_0 < j_1 < \dots$, a.î. $\forall k \ge 0$ $L(s_{i_k}) = L(s_{i_k+1}) = \dots L(s_{i_{k+1}-1}) = L(r_{j_k}) = L(r_{j_k+1}) = \dots L(r_{j_{k+1}-1})$

An LTL formula $\mathbf{A}f$ is *stuttering invariant* if $\forall \pi, \pi'$ with $\pi \sim_{st} \pi'$, $\pi \models f \Leftrightarrow \pi' \models f$

Theorem: Any LTL $_X$ formula (without the **X**operator) is a stuttering-invariant property, and conversely.

Reduction principle

The reduced model is constructed selecting from each state only a subset of the transitions enabled in that state.

Selection is made keeping for every path from the original model M a stuttering-equivalent path in the reduced model M'.

$$\Rightarrow \forall \mathbf{A} f \in LTL_{-X} \quad M \models \mathbf{A} f \Leftrightarrow M' \models \mathbf{A} f$$

Various names and selection criteria: stubborn sets [Valmari], persistent sets [Godefroid]; utilizăm ample sets [Peled].

Selection of transitions: expressed by a set of conditions:

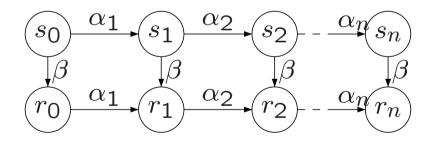
C0: $ample(s) = \emptyset \Leftrightarrow enabled(s) = \emptyset$ successor in original model \Rightarrow there exists successor in reduced model

Reduction conditions

C1 A path from s cannot execute a transition dependent on a transition from ample(s) before executing a transition from ample(s).

Property: Transitions from ample(s) are independent of those in $enabled(s) \setminus ample(s)$

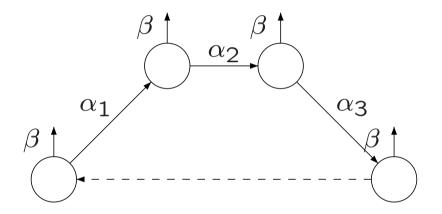
- \Rightarrow any transition from a state s has one of the forms:
- a prefix $\alpha_1\alpha_2...\alpha_n\beta$, where $\beta \in ample(s)$, and α_i independent of β
- an infinite sequence $\alpha_0\alpha_1\ldots$, with α_i independent of any $\beta\in ample(s)$



C2 (Invisibility) $ample(s) \neq enabled(s) \Rightarrow ample(s) \subseteq invisible(s)$ If s is not explored completely all transitions from ample(s) are invisible.

Reduction conditions (cont'd)

C3 A transition activated in all states in a cycle must be included in ample(s) for at least one state s of the cycle.



- guarantees that no portion of the state space is unexplored because of persistenti ignoring of a transition
- implementation: in any cycle, a state is explored completely

Constructing an equivalent path

For the path π from s, we construct an equivalent path π' in the reduced model:

- a) if the next transition is in ample(s), we add it to π'
- **b)** if the next transition in π is not in ample(s)
- \Rightarrow cf. C2 transitions from ample(s) are invisible (\exists transitions $\notin ample(s)$)
- **b1)** if in π there is some transition $\beta \in ample(s)$, we add it to π'
- cf. C1, β independent of previous transitions
- it's invisible, thus commuting it doesn't affect spec
- **b2)** there are no transitions from ample(s) in π
- \Rightarrow add arbitrary transition $\beta \in ample(s)$ to π'
- cf. C1 it does not enable successive transitions
- it's invisible ⇒ does not affect spec
- cf. C3 this case appears a finite number of times

Selecting transitions in practice

Conditions cannot be verified directly \Rightarrow conservative heuristics

- Transitions reading and writing a shared variable are dependent
- Conditional choices in the same process are dependent
- Communication transitions enter dependencies in both processes
- Send operations on the same buffer are dependent.

Likewise, for receives from the same buffer.

Transitions with disjoit process sets are independent

- \Rightarrow select a set P of processes which in the current state do not have communication operations with processes outside P
- $\Rightarrow ample(s) = active transitions from P$

Ideally: few transitions in ample(s) (e.g. local transitions in a process)

Relation between implementation and specification

We've discussed so far:

implementation (model): finite-state automaton specification: formula in temporal logic (LTL, CTL)

Another view:

- specification is also an automaton
- with "fewer details" than the implementation
- model checking for LTL: by converting formula to automaton

Model checking for LTL

General idea:

- we check formulas $\mathbf{A}f$ (f = path formula in which the only state subformulas are atomic propositions)
- $-\mathbf{A}f = \neg \mathbf{E} \neg f \Rightarrow \text{enough to consider } \mathbf{E}f.$
- we construct a $tableau\ T$ for the formula f= an automaton (Kripke structure) that expresses all paths that satisfy f
- we compose the model M with the tableau T
- we check if there exists a path in the composition (with CTL model checking algorithms)

Constructing the tableau. Elementary formulas

Let AP_f be the set of atomic propositions that appear in f.

$$T = (S_T, R_T, L_T)$$
, cu $L_T : S_T \rightarrow 2^{AP_f}$.

Tableau states: sets of *elementary formulas* extracted from f.

- $el(p) = \{p\}$ for $p \in AP_f$
- $el(\neg g) = el(g)$
- $\bullet \ el(g_1 \vee g_2) = el(g_1) \cup el(g_2)$
- $el(\mathbf{X}g) = {\mathbf{X}g} \cup el(g)$
- $el(g_1 U g_2) = \{ X(g_1 U g_2) \} \cup el(g_1) \cup el(g_2)$

Set of tableau states: $S_T = \mathcal{P}(el(f))$

Satisfaction relation in the tableau

We associate to every subformula of f a set of states from T (intuitively: set of states that satisfy the formula)

- $sat(g) = \{s \mid g \in s\}$ for $g \in el(f)$
- $sat(\neg g) = \{s \mid s \notin sat(g)\}$
- $sat(g_1 \vee g_2) = sat(g_1) \cup sat(g_2)$
- $sat(g_1 U g_2) = sat(g_2) \cup (sat(g_1) \cap sat(\mathbf{X}(g_1 U g_2)))$

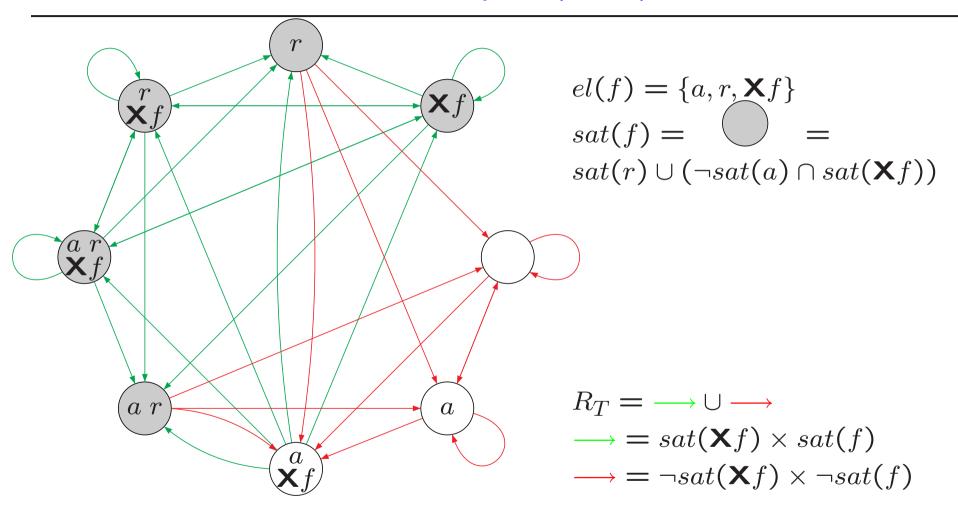
TTransition relation: must be consistent with semantics of X

$$-\mathbf{X}g \in s \to \forall s' . R(s,s') \to g \in s'$$

$$- \mathbf{X}g \notin s \to \forall s' . R(s, s') \to g \notin s'$$

$$R_T(s, s') = \bigwedge_{\mathbf{X}g \in el(f)} s \in sat(\mathbf{X}g) \Leftrightarrow s' \in sat(g)$$

An example: $f = (\neg ack) Urecv$



Computing the product

Definim $T \times M = (S_T, R_T, L_T) \times (S_M, R_M, L_M) = (S, R, L) = P$

- $S = \{(s_T, s_M) \mid s_T \in S_T, s_M \in S_M, L_T(s_T) = L_M(s_M) \cap AP_f\}$
- $R((s_T, s_M), (s'_T, s'_M)) = R_T(s_T, s'_T) \land R_M(s_M, s'_M)$
- $\bullet \ L((s_T, s_M)) = L_T(s_T)$

(simultaneous transitions, only for identically labeled states)

Product: restricted to states from which there is at least one transition

Problem: T does not guarantee *liveness* (eventuality) properties: R_T ensures $sat(g\mathbf{U}h)$ continually sat(h), but not also $\mathbf{F}sat(h)$ \Rightarrow model checking with fairness: $\{sat(g\mathbf{U}h) \rightarrow h \mid g\mathbf{U}h \text{ apare } \hat{\mathbf{n}} \mid f\}$

Theorem: $M, s_M \models \mathbf{E} f \Leftrightarrow \exists s_T \in sat(f) \ . \ P, (s_T, s_M) \models_F \mathbf{E} \mathbf{G} \mathsf{True}$ with fairness conditions $\{sat(g\mathbf{U}h) \to h \mid g\mathbf{U}h \text{ apare } \hat{\mathbf{n}} \ f\}$