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Model checking “on-the-fly”

System state space = cartesian product for components: S = S1 ×

. . . × Sn

⇒ exponential if number of components; may be impossible to build

Specifications given as automata can guide verification algorithms:

⇒ only the needed parts of state space are constructed

Approach: build automaton S from negation of specification

From product state s = (r, q) with r ∈ A (system) and q ∈ S (spec):

– consider only those successors of r labeled the same as transitions

from q

– if counterexample found, terminate without exploring entire state

space

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 3

Partial order reduction methods

Basic idea: build reduced model

– state space and execution paths are subsets of full (original) model

– preserves the same properties as original model

Approach is sound if exluded states/paths bring no extra information

– must determine an equivalence relation between paths

– such that specification cannot distinguish between equivalent paths

– reduced model should contain a representative from each equivalence

class

Method named initially after partial ordering of executed transitions

More generic term: model checking using representatives
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An intuitive view
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Asynchronous composition ⇒ arbitrary ordering of concurrent events

⇒ n transitions generate n! orderings and 2n states

⇒ combinatorial (exponential) “explosion” of resulting state space
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Tranzitions. Dependence and independence

Model: state-transition system (S, T, S0, L)

A transition α ∈ T is a subset α ⊆ S × S

(viewed as a family of transitions with the same label)

Transition is enabled in s: α ∈ enabled(s) ⇔ ∃s′ ∈ S . α(s, s′)

We consider only deterministic transitions: ∀α, s ∃!s′ . α(s, s′)

– the system may still be nondeterministic if |enabled(s)| > 1

Independence: two conditions, ∀s ∈ S:

Enabling: α, β ∈ enabled(s) ⇒ α ∈ enabled(β(s)) ∧ β ∈ enabled(α(s))

– two independent transitions do not disable each other

– but one may lead to the other being enabled

Commutativity : α, β ∈ enabled(s) ⇒ α(β(s)) = β(α(s))

– effect of execution same, regardless of ordering
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Visible transitions

Visibility (with respect to AP ′ ⊆ AP)

α ∈ T invisible ⇔ ∀s, s′ ∈ S, s′ = α(s) ⇒ L(s) ∩ AP ′ = L(s′) ∩ AP ′

(does not change labeling with propositions from AP ′)

typically: AP ′ = atomic propositions from specification

p p p, q

p p, q p, q
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Stuttering invariance

In asynchronous composition, the next-time operator X is not relevant:

– two transitions in different components can occur in any order

– two transitions in the same component can be separated by arbitrar-

ily many transitions in other components ⇒ the local state stays the

same

Two infinite paths π = s0s1 . . . and π′ = r0r1 . . . are stuttering equiv-

alent π ∼st π′ if they can be split into pairwise corresponding finite

blocks of identically labelled states

∃ infinite sequences 0 = i0 < i1 < . . . and 0 = j0 < j1 < . . ., a.̂ı. ∀k ≥ 0

L(sik
) = L(sik+1) = . . . L(sik+1−1) = L(rjk

) = L(rjk+1) = . . . L(rjk+1−1)

An LTL formula Af is stuttering invariant if ∀π, π′ with π ∼st π′, π |=

f ⇔ π′ |= f

Theorem: Any LTL−X formula (without the Xoperator) is a stuttering-

invariant property, and conversely.
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Reduction principle

The reduced model is constructed selecting from each state only a

subset of the transitions enabled in that state.

Selection is made keeping for every path from the original model M a

stuttering-equivalent path in the reduced model M ′.

⇒ ∀Af ∈ LTL−X M |= Af ⇔ M ′ |= Af

Various names and selection criteria: stubborn sets [Valmari],

persistent sets [Godefroid]; utilizǎm ample sets [Peled].

Selection of transitions: expressed by a set of conditions:

C0: ample(s) = ∅ ⇔ enabled(s) = ∅

successor in original model ⇒ there exists successor in reduced model
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Reduction conditions

C1 A path from s cannot execute a transition dependent on a transition

from ample(s) before executing a transition from ample(s).

Property: Transitions from ample(s) are independent of those in

enabled(s) \ ample(s)

⇒ any transition from a state s has one of the forms:

– a prefix α1α2 . . . αnβ, where β ∈ ample(s), and αi independent of β

– an infinite sequence α0α1 . . ., with αi independent of any β ∈ ample(s)

s0 s1 s2 sn

r0 r1 r2 rn

α1 α2 αn

α1 α2 αn

β β β β

C2 (Invisibility) ample(s) 6= enabled(s) ⇒ ample(s) ⊆ invisible(s)

If s is not explored completely all transitions from ample(s) are invisible.
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Reduction conditions (cont’d)

C3 A transition activated in all states in a cycle must be included in

ample(s) for at least one state s of the cycle.

β

β β

β

α1

α2

α3

– guarantees that no portion of the state space is unexplored because

of persistenti ignoring of a transition

– implementation: in any cycle, a state is explored completely
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Constructing an equivalent path

For the path π from s, we construct an equivalent path π′ in the re-

duced model:

a) if the next transition is in ample(s), we add it to π′

b) if the next transition in π is not in ample(s)

⇒ cf. C2 transitions from ample(s)are invisible (∃ transitions 6∈ ample(s))

b1) if in π there is some transition β ∈ ample(s), we add it to π′

– cf. C1, β independent of previous transitions

– it’s invisible, thus commuting it doesn’t affect spec

b2) there are no transitions from ample(s) in π

⇒ add arbitrary transition β ∈ ample(s) to π′

– cf. C1 it does not enable successive transitions

– it’s invisible ⇒ does not affect spec

– cf. C3 this case appears a finite number of times
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Selecting transitions in practice

Conditions cannot be verified directly ⇒ conservative heuristics

– Transitions reading and writing a shared variable are dependent

– Conditional choices in the same process are dependent

– Communication transitions enter dependencies in both processes

– Send operations on the same buffer are dependent.

Likewise, for receives from the same buffer.

Transitions with disjoit process sets are independent

⇒ select a set P of processes which in the current state do not have

communication operations with processes outside P

⇒ ample(s) = active transitions from P

Ideally: few transitions in ample(s) (e.g. local transitions in a process)
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Relation between implementation and specification

We’ve discussed so far:

implementation (model): finite-state automaton

specification: formula in temporal logic (LTL, CTL)

Another view:

– specification is also an automaton

– with “fewer details” than the implementation

– model checking for LTL: by converting formula to automaton
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Model checking for LTL

General idea:

– we check formulas Af (f = path formula

in which the only state subformulas are atomic propositions)

– Af = ¬E¬f ⇒ enough to consider Ef .

– we construct a tableau T for the formula f = an automaton

(Kripke structure) that expresses all paths that satisfy f

– we compose the model M with the tableau T

– we check if there exists a path in the composition

(with CTL model checking algorithms)
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Constructing the tableau. Elementary formulas

Let APf be the set of atomic propositions that appear in f .

T = (ST , RT , LT ), cu LT : ST → 2APf .

Tableau states: sets of elementary formulas extracted from f .

• el(p) = {p} for p ∈ APf

• el(¬g) = el(g)

• el(g1 ∨ g2) = el(g1) ∪ el(g2)

• el(Xg) = {Xg} ∪ el(g)

• el(g1Ug2) = {X(g1Ug2)} ∪ el(g1) ∪ el(g2)

Set of tableau states: ST = P(el(f))
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Satisfaction relation in the tableau

We associate to every subformula of f a set of states from T

(intuitively: set of states that satisfy the formula)

• sat(g) = {s | g ∈ s} for g ∈ el(f)

• sat(¬g) = {s | s 6∈ sat(g)}

• sat(g1 ∨ g2) = sat(g1) ∪ sat(g2)

• sat(g1Ug2) = sat(g2) ∪ (sat(g1) ∩ sat(X(g1Ug2)))

TTransition relation: must be consistent with semantics of X

– Xg ∈ s → ∀s′ . R(s, s′) → g ∈ s′

– Xg 6∈ s → ∀s′ . R(s, s′) → g 6∈ s′

RT (s, s′) =
∧

Xg∈el(f)

s ∈ sat(Xg) ⇔ s′ ∈ sat(g)
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An example: f = (¬ack)Urecv

Xf

r

r
Xf

a r
Xf

a r

a
Xf

a

el(f) = {a, r,Xf}

sat(f) = =

sat(r) ∪ (¬sat(a) ∩ sat(Xf))

RT = −→∪−→

−→ = sat(Xf) × sat(f)

−→ = ¬sat(Xf) × ¬sat(f)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 18

Computing the product

Definim T × M = (ST , RT , LT ) × (SM , RM , LM) = (S, R, L) = P

• S = {(sT , sM) | sT ∈ ST , sM ∈ SM , LT (sT ) = LM(sM) ∩ APf}

• R((sT , sM), (s′T , s′M)) = RT (sT , s′T ) ∧ RM(sM , s′M)

• L((sT , sM)) = LT (sT )

(simultaneous transitions, only for identically labeled states)

Product: restricted to states from which there is at least one transition

Problem: T does not guarantee liveness (eventuality) properties:

RT ensures sat(gUh) continually sat(h), but not also Fsat(h)

⇒ model checking with fairness: {sat(gUh) → h | gUh apare ı̂n f}

Theorem: M, sM |= Ef ⇔ ∃sT ∈ sat(f) . P, (sT , sM) |=F EGTrue

with fairness conditions {sat(gUh) → h | gUh apare ı̂n f}
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