		Partial order reduction. Model checking with automata	2	Partial order reduction. Model checking with automata	3	
		Model checking "on-the-fly"		Partial order reduction methods		
Partial order reduction		System state space = cartesian product for co $\ldots \times S_n$ \Rightarrow exponential if number of components; may b	mponents: $S = S_1 \times$ e impossible to build	Basic idea: build <i>reduced</i> model – state space and execution paths are subsets of full – preserves the same properties as original model	(original) model	
Model checking with automata 27 October 2005		Specifications given as automata can <i>guide</i> verification algorithms: \Rightarrow only the needed parts of state space are constructed Approach: build automaton S from negation of specification From product state $s = (r, q)$ with $r \in A$ (system) and $q \in S$ (spec): – consider only those successors of r labeled the same as transitions from q – if counterexample found, terminate without exploring entire state space		Approach is sound if exluded states/paths bring no extra information – must determine an <i>equivalence relation</i> between paths – such that specification cannot distinguish between equivalent paths – reduced model should contain a representative from each equivalence class		
				Formal verification. Lecture 4	Marius Minea	Formal verification. Lecture 4

Partial order reduction. Model checking with automata

Asynchronous composition \Rightarrow arbitrary ordering of concurrent events \Rightarrow n transitions generate n! orderings and 2^n states

 \Rightarrow combinatorial (exponential) "explosion" of resulting state space

Formal verification. Lecture 4

Marius Minea

us Minea

Λ

Model: state-transition system (S, T, S_0, L)

(viewed as a family of transitions with the same label)

Transition is *enabled* in s: $\alpha \in enabled(s) \Leftrightarrow \exists s' \in S . \alpha(s, s')$

We consider only *deterministic* transitions: $\forall \alpha, s \exists !s' . \alpha(s, s')$

- the system may still be nondeterministic if |enabled(s)| > 1

Enabling: $\alpha, \beta \in enabled(s) \Rightarrow \alpha \in enabled(\beta(s)) \land \beta \in enabled(\alpha(s))$ - two independent transitions do not *disable* each other

A transition $\alpha \in T$ is a subset $\alpha \subseteq S \times S$

Independence: two conditions, $\forall s \in S$:

- but one may lead to the other being enabled

- effect of execution same, regardless of ordering

Commutativity: $\alpha, \beta \in enabled(s) \Rightarrow \alpha(\beta(s)) = \beta(\alpha(s))$

Tranzitions. Dependence and independence

Partial order reduction. Model checking with automata

Visible transitions

Visibility (with respect to $AP' \subseteq AP$) $\alpha \in T$ invisible $\Leftrightarrow \forall s, s' \in S, s' = \alpha(s) \Rightarrow L(s) \cap AP' = L(s') \cap AP'$ (does not change labeling with propositions from AP') typically: AP' = atomic propositions from specification

Partial order reduction. Model checking with automata

$\begin{array}{c} p & & \\ p & & \\ p & & \\ \end{array} \begin{array}{c} p & & \\ \end{array} \end{array}$

Formal verification. Lecture 4

cation. Lecture 4

Marius Minea

5

Formal verification. Lecture 4

Marius Minea

6

Partial order reduction.	Model checking with automata
	Stuttering invariance

In asynchronous composition, the next-time operator \mathbf{X} is not relevant: - two transitions in different components can occur in any order

- two transitions in the same component can be separated by arbitrarilv many transitions in other components \Rightarrow the *local* state stays the same

Two infinite paths $\pi = s_0 s_1 \dots$ and $\pi' = r_0 r_1 \dots$ are stuttering equivalent $\pi \sim_{et} \pi'$ if they can be split into pairwise corresponding finite blocks of identically labelled states

 \exists infinite sequences $0 = i_0 < i_1 < \dots$ and $0 = j_0 < j_1 < \dots$, a.î. $\forall k > 0$ $L(s_{i_k}) = L(s_{i_k+1}) = \dots L(s_{i_{k+1}-1}) = L(r_{j_k}) = L(r_{j_k+1}) = \dots L(r_{j_{k+1}-1})$ An LTL formula **A***f* is *stuttering invariant* if $\forall \pi, \pi'$ with $\pi \sim_{st} \pi', \pi \models$ $f \Leftrightarrow \pi' \models f$

Theorem: Any LTL_{-X} formula (without the **X**operator) is a stutteringinvariant property, and conversely.

ation. Lecture 4

Marius Minea

10

7

The reduced model is constructed selecting from each state only a subset of the transitions enabled in that state.

Selection is made keeping for every path from the original model M a stuttering-equivalent path in the reduced model M'. $\Rightarrow \forall \mathbf{A} f \in LTL_{-X} \quad M \models \mathbf{A} f \Leftrightarrow M' \models \mathbf{A} f$

Various names and selection criteria: stubborn sets [Valmari], persistent sets [Godefroid]; utilizăm ample sets [Peled].

Selection of transitions: expressed by a set of conditions:

C0: $ample(s) = \emptyset \Leftrightarrow enabled(s) = \emptyset$ successor in original model \Rightarrow there exists successor in reduced model

Formal verification. Lecture 4

Partial order reduction. Model checking with automata Reduction conditions

C1 A path from *s* cannot execute a transition dependent on a transition from ample(s) before executing a transition from ample(s).

Property: Transitions from ample(s) are independent of those in $enabled(s) \setminus ample(s)$

 \Rightarrow any transition from a state s has one of the forms:

- a prefix $\alpha_1 \alpha_2 \dots \alpha_n \beta$, where $\beta \in ample(s)$, and α_i independent of β
- an infinite sequence $\alpha_0 \alpha_1 \dots$, with α_i independent of any $\beta \in ample(s)$

C2 (Invisibility) $ample(s) \neq enabled(s) \Rightarrow ample(s) \subseteq invisible(s)$ If s is not explored completely all transitions from ample(s) are invisible. Formal verification. Lecture 4 Marius Minea

Selecting transitions in practice

Conditions cannot be verified directly \Rightarrow conservative heuristics

- Conditional choices in the same process are dependent

- Send operations on the same buffer are dependent.

Transitions with disjoit process sets are independent

communication operations with processes outside ${\boldsymbol{P}}$

Likewise, for receives from the same buffer.

 \Rightarrow ample(s) = active transitions from P

- Transitions reading and writing a shared variable are dependent

- Communication transitions enter dependencies in both processes

 \Rightarrow select a set P of processes which in the current state do not have

Ideally: few transitions in ample(s) (e.g. local transitions in a process)

Partial ord	er reduction	Model	checking	with	automata

Reduction conditions (cont'd)

C3 A transition activated in all states in a cycle must be included in ample(s) for at least one state s of the cycle.

- guarantees that no portion of the state space is unexplored because of persistenti ignoring of a transition

- implementation: in any cycle, a state is explored completely

Partial order reduction. Model checking with automata Constructing an equivalent path For the path π from s, we construct an equivalent path π' in the reduced model: a) if the next transition is in ample(s), we add it to π' **b)** if the next transition in π is not in *ample(s)* \Rightarrow cf. **C2** transitions from ample(s) are invisible (\exists transitions \notin ample(s)) **b1)** if in π there is some transition $\beta \in ample(s)$, we add it to π' - cf. **C1**. β independent of previous transitions - it's invisible, thus commuting it doesn't affect spec **b2)** there are no transitions from ample(s) in π \Rightarrow add arbitrary transition $\beta \in ample(s)$ to π' - cf. C1 it does not enable successive transitions - it's invisible \Rightarrow does not affect spec

- cf. C3 this case appears a finite number of times

Formal verification. Lecture 4

Marius Minea

Formal verification. Lecture 4

Marius Minea

8

Marius Minea

11

Formal verification. Lecture 4

Partial order reduction. Model checking with automata

12

a

Partial order reduction. Model checking with automata	13	Partial order reduction. Model checking with automata	14	Partial order reduction. Model checking with automata	15
		Model checking for L	TL	Constructing the tableau. Elementary formulas	
Relation between implementation and specification We've discussed so far: implementation (model): finite-state automaton specification: formula in temporal logic (LTL, CTL) Another view: - specification is also an automaton - with "fewer details" than the implementation - model checking for LTL: by converting formula to automaton		General idea: - we check formulas $\mathbf{A}f$ ($f = path$ formula in which the only state subformulas are atomic propositions) - $\mathbf{A}f = \neg \mathbf{E} \neg f \Rightarrow$ enough to consider $\mathbf{E}f$. - we construct a <i>tableau</i> T for the formula $f =$ an automaton (Kripke structure) that expresses <i>all</i> paths that satisfy f - we compose the model M with the tableau T - we check if there exists a path in the composition (with CTL model checking algorithms)		Let AP_f be the set of atomic propositions that appear in f . $T = (S_T, R_T, L_T)$, cu $L_T : S_T \to 2^{AP_f}$. Tableau states: sets of elementary formulas extracted from f . $e \ el(p) = \{p\}$ for $p \in AP_f$ $e \ el(q_1 = el(g)) = el(g_1) \cup el(g_2)$ $e \ el(g_1 \cup g_2) = el(g_1) \cup el(g_2)$ $e \ el(g_1 \cup g_2) = \{\mathbf{X}(g_1 \cup g_2)\} \cup el(g_1) \cup el(g_2)$ Set of tableau states: $S_T = \mathcal{P}(el(f))$	
Formal verification. Lecture 4	Marius Minea	Formal verification. Lecture 4	Marius Minea	Formal verification. Lecture 4 Marius Mine	3a
Partial order reduction. Model checking with automata	16	Partial order reduction. Model checking with automata An example: $f = (\neg ack)$	17	Partial order reduction. Model checking with automata 1 Computing the product	18
Satisfaction relation in the tables We associate to every subformula of f a set of states (intuitively: set of states that satisfy the formula) • $sat(g) = \{s \mid g \in s\}$ for $g \in el(f)$ • $sat(-g) = \{s \mid s \notin sat(g)\}$ • $sat(g_1 \lor g_2) = sat(g_1) \cup sat(g_2)$ • $sat(g_1 \sqcup g_2) = sat(g_2) \cup (sat(g_1) \cap sat(\mathbf{X}(g_1 \sqcup g_2)))$ Thransition relation: must be consistent with semant - $\mathbf{X}g \notin s \to \forall s' \cdot R(s, s') \to g \notin s'$ $R_T(s, s') = \bigwedge_{Xg \in el(f)} s \in sat(\mathbf{X}g) \Leftrightarrow s' \in sat$ $X_g \in el(f)$	from T cics of X (g)	$\begin{array}{c} c \\ c$	$= \{a, r, \mathbf{X}f\} = \bigcirc =$ $\cup (\neg sat(a) \cap sat(\mathbf{X}f))$ $sat(\mathbf{X}f) \times sat(f)$ $\neg sat(\mathbf{X}f) \times \neg sat(f)$	Definim $T \times M = (S_T, R_T, L_T) \times (S_M, R_M, L_M) = (S, R, L) = P$ • $S = \{(s_T, s_M) \mid s_T \in S_T, s_M \in S_M, L_T(s_T) = L_M(s_M) \cap AP_f\}$ • $R((s_T, s_M), (s'_T, s'_M)) = R_T(s_T, s'_T) \wedge R_M(s_M, s'_M)$ • $L((s_T, s_M)) = L_T(s_T)$ (simultaneous transitions, only for identically labeled states) Product: restricted to states from which there is at least one transition Problem: T does not guarantee <i>liveness</i> (eventuality) properties: R_T ensures $sat(g\mathbf{U}h)$ continually $sat(h)$, but not also $\mathbf{F}sat(h)$ \Rightarrow model checking with <i>fairness</i> : $\{sat(g\mathbf{U}h) \rightarrow h \mid g\mathbf{U}h \text{ apare in } f\}$ Theorem: $M, s_M \models \mathbf{E}f \Leftrightarrow \exists s_T \in sat(f) \cdot P, (s_T, s_M) \models_F \mathbf{E}\mathbf{G}$ True with fairness conditions $\{sat(g\mathbf{U}h) \rightarrow h \mid g\mathbf{U}h \text{ apare in } f\}$	'n
Formal verification. Lecture 4	Marius Minea	Formal verification. Lecture 4	Marius Minea	Formal verification. Lecture 4 Marius Mine	ea