
Partial order reduction

Model checking with automata

27 October 2005

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 2

Model checking “on-the-fly”

System state space = cartesian product for components: S = S1 ×

. . . × Sn

⇒ exponential if number of components; may be impossible to build

Specifications given as automata can guide verification algorithms:

⇒ only the needed parts of state space are constructed

Approach: build automaton S from negation of specification

From product state s = (r, q) with r ∈ A (system) and q ∈ S (spec):

– consider only those successors of r labeled the same as transitions

from q

– if counterexample found, terminate without exploring entire state

space

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 3

Partial order reduction methods

Basic idea: build reduced model

– state space and execution paths are subsets of full (original) model

– preserves the same properties as original model

Approach is sound if exluded states/paths bring no extra information

– must determine an equivalence relation between paths

– such that specification cannot distinguish between equivalent paths

– reduced model should contain a representative from each equivalence

class

Method named initially after partial ordering of executed transitions

More generic term: model checking using representatives

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 4

An intuitive view

q0

q1

α1

r0

r1

α2

s0

s1

α3

(q0, r0, s0)

(q1, r1, s1)

α1 α2
α3

α2

α3

α1

α3

α1

α2

α3
α2 α1

Asynchronous composition ⇒ arbitrary ordering of concurrent events

⇒ n transitions generate n! orderings and 2n states

⇒ combinatorial (exponential) “explosion” of resulting state space

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 5

Tranzitions. Dependence and independence

Model: state-transition system (S, T, S0, L)

A transition α ∈ T is a subset α ⊆ S × S

(viewed as a family of transitions with the same label)

Transition is enabled in s: α ∈ enabled(s) ⇔ ∃s′ ∈ S . α(s, s′)

We consider only deterministic transitions: ∀α, s ∃!s′ . α(s, s′)

– the system may still be nondeterministic if |enabled(s)| > 1

Independence: two conditions, ∀s ∈ S:

Enabling: α, β ∈ enabled(s) ⇒ α ∈ enabled(β(s)) ∧ β ∈ enabled(α(s))

– two independent transitions do not disable each other

– but one may lead to the other being enabled

Commutativity : α, β ∈ enabled(s) ⇒ α(β(s)) = β(α(s))

– effect of execution same, regardless of ordering

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 6

Visible transitions

Visibility (with respect to AP ′ ⊆ AP)

α ∈ T invisible ⇔ ∀s, s′ ∈ S, s′ = α(s) ⇒ L(s) ∩ AP ′ = L(s′) ∩ AP ′

(does not change labeling with propositions from AP ′)

typically: AP ′ = atomic propositions from specification

p p p, q

p p, q p, q

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 7

Stuttering invariance

In asynchronous composition, the next-time operator X is not relevant:

– two transitions in different components can occur in any order

– two transitions in the same component can be separated by arbitrar-

ily many transitions in other components ⇒ the local state stays the

same

Two infinite paths π = s0s1 . . . and π′ = r0r1 . . . are stuttering equiv-

alent π ∼st π′ if they can be split into pairwise corresponding finite

blocks of identically labelled states

∃ infinite sequences 0 = i0 < i1 < . . . and 0 = j0 < j1 < . . ., a.̂ı. ∀k ≥ 0

L(sik
) = L(sik+1) = . . . L(sik+1−1) = L(rjk

) = L(rjk+1) = . . . L(rjk+1−1)

An LTL formula Af is stuttering invariant if ∀π, π′ with π ∼st π′, π |=

f ⇔ π′ |= f

Theorem: Any LTL−X formula (without the Xoperator) is a stuttering-

invariant property, and conversely.

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 8

Reduction principle

The reduced model is constructed selecting from each state only a

subset of the transitions enabled in that state.

Selection is made keeping for every path from the original model M a

stuttering-equivalent path in the reduced model M ′.

⇒ ∀Af ∈ LTL−X M |= Af ⇔ M ′ |= Af

Various names and selection criteria: stubborn sets [Valmari],

persistent sets [Godefroid]; utilizǎm ample sets [Peled].

Selection of transitions: expressed by a set of conditions:

C0: ample(s) = ∅ ⇔ enabled(s) = ∅

successor in original model ⇒ there exists successor in reduced model

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 9

Reduction conditions

C1 A path from s cannot execute a transition dependent on a transition

from ample(s) before executing a transition from ample(s).

Property: Transitions from ample(s) are independent of those in

enabled(s) \ ample(s)

⇒ any transition from a state s has one of the forms:

– a prefix α1α2 . . . αnβ, where β ∈ ample(s), and αi independent of β

– an infinite sequence α0α1 . . ., with αi independent of any β ∈ ample(s)

s0 s1 s2 sn

r0 r1 r2 rn

α1 α2 αn

α1 α2 αn

β β β β

C2 (Invisibility) ample(s) 6= enabled(s) ⇒ ample(s) ⊆ invisible(s)

If s is not explored completely all transitions from ample(s) are invisible.

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 10

Reduction conditions (cont’d)

C3 A transition activated in all states in a cycle must be included in

ample(s) for at least one state s of the cycle.

β

β β

β

α1

α2

α3

– guarantees that no portion of the state space is unexplored because

of persistenti ignoring of a transition

– implementation: in any cycle, a state is explored completely

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 11

Constructing an equivalent path

For the path π from s, we construct an equivalent path π′ in the re-

duced model:

a) if the next transition is in ample(s), we add it to π′

b) if the next transition in π is not in ample(s)

⇒ cf. C2 transitions from ample(s)are invisible (∃ transitions 6∈ ample(s))

b1) if in π there is some transition β ∈ ample(s), we add it to π′

– cf. C1, β independent of previous transitions

– it’s invisible, thus commuting it doesn’t affect spec

b2) there are no transitions from ample(s) in π

⇒ add arbitrary transition β ∈ ample(s) to π′

– cf. C1 it does not enable successive transitions

– it’s invisible ⇒ does not affect spec

– cf. C3 this case appears a finite number of times

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 12

Selecting transitions in practice

Conditions cannot be verified directly ⇒ conservative heuristics

– Transitions reading and writing a shared variable are dependent

– Conditional choices in the same process are dependent

– Communication transitions enter dependencies in both processes

– Send operations on the same buffer are dependent.

Likewise, for receives from the same buffer.

Transitions with disjoit process sets are independent

⇒ select a set P of processes which in the current state do not have

communication operations with processes outside P

⇒ ample(s) = active transitions from P

Ideally: few transitions in ample(s) (e.g. local transitions in a process)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 13

Relation between implementation and specification

We’ve discussed so far:

implementation (model): finite-state automaton

specification: formula in temporal logic (LTL, CTL)

Another view:

– specification is also an automaton

– with “fewer details” than the implementation

– model checking for LTL: by converting formula to automaton

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 14

Model checking for LTL

General idea:

– we check formulas Af (f = path formula

in which the only state subformulas are atomic propositions)

– Af = ¬E¬f ⇒ enough to consider Ef .

– we construct a tableau T for the formula f = an automaton

(Kripke structure) that expresses all paths that satisfy f

– we compose the model M with the tableau T

– we check if there exists a path in the composition

(with CTL model checking algorithms)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 15

Constructing the tableau. Elementary formulas

Let APf be the set of atomic propositions that appear in f .

T = (ST , RT , LT), cu LT : ST → 2APf .

Tableau states: sets of elementary formulas extracted from f .

• el(p) = {p} for p ∈ APf

• el(¬g) = el(g)

• el(g1 ∨ g2) = el(g1) ∪ el(g2)

• el(Xg) = {Xg} ∪ el(g)

• el(g1Ug2) = {X(g1Ug2)} ∪ el(g1) ∪ el(g2)

Set of tableau states: ST = P(el(f))

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 16

Satisfaction relation in the tableau

We associate to every subformula of f a set of states from T

(intuitively: set of states that satisfy the formula)

• sat(g) = {s | g ∈ s} for g ∈ el(f)

• sat(¬g) = {s | s 6∈ sat(g)}

• sat(g1 ∨ g2) = sat(g1) ∪ sat(g2)

• sat(g1Ug2) = sat(g2) ∪ (sat(g1) ∩ sat(X(g1Ug2)))

TTransition relation: must be consistent with semantics of X

– Xg ∈ s → ∀s′ . R(s, s′) → g ∈ s′

– Xg 6∈ s → ∀s′ . R(s, s′) → g 6∈ s′

RT (s, s′) =
∧

Xg∈el(f)

s ∈ sat(Xg) ⇔ s′ ∈ sat(g)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 17

An example: f = (¬ack)Urecv

Xf

r

r
Xf

a r
Xf

a r

a
Xf

a

el(f) = {a, r,Xf}

sat(f) = =

sat(r) ∪ (¬sat(a) ∩ sat(Xf))

RT = −→∪−→

−→ = sat(Xf) × sat(f)

−→ = ¬sat(Xf) × ¬sat(f)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 18

Computing the product

Definim T × M = (ST , RT , LT) × (SM , RM , LM) = (S, R, L) = P

• S = {(sT , sM) | sT ∈ ST , sM ∈ SM , LT (sT) = LM(sM) ∩ APf}

• R((sT , sM), (s′T , s′M)) = RT (sT , s′T) ∧ RM(sM , s′M)

• L((sT , sM)) = LT (sT)

(simultaneous transitions, only for identically labeled states)

Product: restricted to states from which there is at least one transition

Problem: T does not guarantee liveness (eventuality) properties:

RT ensures sat(gUh) continually sat(h), but not also Fsat(h)

⇒ model checking with fairness: {sat(gUh) → h | gUh apare ı̂n f}

Theorem: M, sM |= Ef ⇔ ∃sT ∈ sat(f) . P, (sT , sM) |=F EGTrue

with fairness conditions {sat(gUh) → h | gUh apare ı̂n f}

Formal verification. Lecture 4 Marius Minea

