Partial order reduction
Model checking with automata

27 October 2005

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 4

An intuitive view

(90: 70, 50)

(q1,71,51)

Asynchronous composition = arbitrary ordering of concurrent events
= n transitions generate n! orderings and 2™ states
= combinatorial (exponential) “explosion” of resulting state space

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 2

Model checking “on-the-fly”

System state space = cartesian product for components: S = 57 x
... X Sy
= exponential if number of components; may be impossible to build

Specifications given as automata can guide verification algorithms:
= only the needed parts of state space are constructed

Approach: build automaton § from negation of specification

From product state s = (r,q) with r € A (system) and ¢ € S (spec):

— consider only those successors of r labeled the same as transitions
from ¢q

— if counterexample found, terminate without exploring entire state
space

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 5

Tranzitions. Dependence and independence

Model: state-transition system (S, T, So, L)

A transition a« € T' is a subset « C S x S

(viewed as a family of transitions with the same label)
Transition is enabled in s: « € enabled(s) < 3s' € S . a(s,s)
We consider only deterministic transitions: Va,s 3!s’ . a(s,s’)
— the system may still be nondeterministic if |enabled(s)| > 1

Independence: two conditions, Vs € S:

Enabling: o, € enabled(s) = a € enabled(3(s)) A B € enabled(a(s))
— two independent transitions do not disable each other

— but one may lead to the other being enabled

Commutativity: o, € enabled(s) = a(3(s)) = B(a(s))

— effect of execution same, regardless of ordering

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 3

Partial order reduction methods

Basic idea: build reduced model

— state space and execution paths are subsets of full (original) model
— preserves the same properties as original model

Approach is sound if exluded states/paths bring no extra information
— must determine an equivalence relation between paths

— such that specification cannot distinguish between equivalent paths
— reduced model should contain a representative from each equivalence
class

Method named initially after partial ordering of executed transitions

More generic term: model checking using representatives

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 6

Visible transitions

Visibility (with respect to AP’ C AP)

a € T invisible & Vs, s’ € S,s' = a(s) = L(s) N AP' = L(s') n AP’
(does not change labeling with propositions from AP’)
typically: AP’ = atomic propositions from specification

®O—0O—3—¢3

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 7

Stuttering invariance

In asynchronous composition, the next-time operator X is not relevant:
— two transitions in different components can occur in any order

— two transitions in the same component can be separated by arbitrar-
ily many transitions in other components = the local state stays the
same

Two infinite paths @ = sgs1... and ©/ = rqgry ... are stuttering equiv-
alent ™ ~g w' if they can be split into pairwise corresponding finite
blocks of identically labelled states

3 infinite sequences 0 =ip <i; <...and 0 =jp<j1 <...,al VE>0
L(si,) = L(sjp+1) = - ..L(s,k_H,l) = L(rj) = L(rj+1) = ...L(7‘_,-k+1,1)
An LTL formula Af is stuttering invariant if Vm, 7’/ with © ~g 7/, 7 |=
ferdEf

Theorem: Any LTL_x formula (without the Xoperator) is a stuttering-
invariant property, and conversely.

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 10

Reduction conditions (cont'd)

C3 A transition activated in all states in a cycle must be included in
ample(s) for at least one state s of the cycle.

— guarantees that no portion of the state space is unexplored because
of persistenti ignoring of a transition
— implementation: in any cycle, a state is explored completely

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 8

Reduction principle

The reduced model is constructed selecting from each state only a
subset of the transitions enabled in that state.

Selection is made keeping for every path from the original model M a
stuttering-equivalent path in the reduced model M’.
=VAfeLTL_x MEAf< M =Af

Various names and selection criteria: stubborn sets [Valmari],
persistent sets [Godefroid]; utilizam ample sets [Peled].

Selection of transitions: expressed by a set of conditions:

CO: ample(s) = 0 < enabled(s) =0
successor in original model = there exists successor in reduced model

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 11

Constructing an equivalent path

For the path 7 from s, we construct an equivalent path =’ in the re-
duced model:

a) if the next transition is in ample(s), we add it to =’

b) if the next transition in « is not in ample(s)

= cf. C2 transitions from ample(s)are invisible (3 transitions & ample(s))
bl) if in 7 there is some transition 8 € ample(s), we add it to =’

— cf. C1, g independent of previous transitions

— it's invisible, thus commuting it doesn't affect spec

b2) there are no transitions from ample(s) in 7

= add arbitrary transition 8 € ample(s) to =’

— cf. C1 it does not enable successive transitions

— it's invisible = does not affect spec

— cf. C3 this case appears a finite number of times

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 9

Reduction conditions

C1 A path from s cannot execute a transition dependent on a transition
from ample(s) before executing a transition from ample(s).

Property: Transitions from ample(s) are independent of those in
enabled(s) \ ample(s)

= any transition from a state s has one of the forms:
— a prefix ajas...ap3, where 3 € ample(s), and «; independent of 3
— an infinite sequence apaj ..., with «; independent of any 3 € ample(s)

C2 (Invisibility) ample(s) # enabled(s) = ample(s) C invisible(s)
If s is not explored completely all transitions from ample(s) are invisible.

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 12

Selecting transitions in practice

Conditions cannot be verified directly = conservative heuristics

— Transitions reading and writing a shared variable are dependent
— Conditional choices in the same process are dependent

— Communication transitions enter dependencies in both processes
— Send operations on the same buffer are dependent.

Likewise, for receives from the same buffer.

Transitions with disjoit process sets are independent

= select a set P of processes which in the current state do not have
communication operations with processes outside P
= ample(s) = active transitions from P

Ideally: few transitions in ample(s) (e.g. local transitions in a process)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 13

Relation between implementation and specification

We've discussed so far:
implementation (model): finite-state automaton
specification: formula in temporal logic (LTL, CTL)

Another view:
— specification is also an automaton
— with “fewer details” than the implementation
— model checking for LTL: by converting formula to automaton

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 16

Satisfaction relation in the tableau

We associate to every subformula of f a set of states from 7'
(intuitively: set of states that satisfy the formula)

o sat(g) = {s| g € s} for g € el(f)

o sat(~g) = {s | s & sat(g)}

e sat(g1 V g2) = sat(g1) U sat(g2)

o sat(g1Ugz) = sat(g2) U (sat(g1) N sat(X(g1Ug2)))

T Transition relation: must be consistent with semantics of X
- Xg€es—Vs. R(s,s) —ges
- Xggs—Vs . R(s,s)—gd&s
Rp(s,s') = N\ s€sat(Xg) & s’ € sat(g)
Xgeel(f)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 14

Model checking for LTL

General idea:

— we check formulas Af (f = path formula

in which the only state subformulas are atomic propositions)
— Af =—-E-~f = enough to consider Ef.

— we construct a tableau T for the formula f = an automaton
(Kripke structure) that expresses all paths that satisfy f

— we compose the model M with the tableau T'

— we check if there exists a path in the composition

(with CTL model checking algorithms)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 17

An example: f = (—ack)Urecv

el(f) = {a, 7, X[}

sat(f) = =
sat(r) U (=sat(a) N sat(Xf))

Ry = U —
= sat(Xf) x sat(f)
— = =sat(Xf) x —sat(f)

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 15

Constructing the tableau. Elementary formulas

Let APy be the set of atomic propositions that appear in f.

T = (Sp, Ry, Ly), cu Ly : Sp— 2477,

Tableau states: sets of elementary formulas extracted from f.
o el(p) = {p} for p € APy

o cl(—g) =el(g)

o cl(g1V g2) = el(g1) Uel(g2)

o cl(Xg) = {Xg} Uel(g)

o el(91Ug2) = {X(91Ug2)} Uel(g1) Uel(g2)

Set of tableau states: Sp = P(el(f))

Formal verification. Lecture 4 Marius Minea

Partial order reduction. Model checking with automata 18

Computing the product

Definim T x M = (S, Ry, Ly) x (Sar, Rag, Lyy) = (S, R, L) = P

o S={(s7,sm) | sT € ST, 80 € Spps Lr(sT) = Lpg(spr) N APy}

o R((s7,s00), (85 shy)) = Rp(sy,) A Rag(sars shyy)

o L((s7,sm)) = L(sT)

(simultaneous transitions, only for identically labeled states)

Product: restricted to states from which there is at least one transition

Problem: T does not guarantee liveness (eventuality) properties:
Ry ensures sat(gUh) continually sat(h), but not also Fsat(h)

= model checking with fairness: {sat(gUh) — h | gUh apare in f}

Theorem: M, sy, = Ef < 3sp € sat(f) . P, (sp,sy) = EGTrue
with fairness conditions {sat(gUh) — h | gUh apare in f}

Formal verification. Lecture 4 Marius Minea

