Verification of timed systems

2 November 2005

— discrete and continuous time

— extensions of untimed model checking algorithms
— quantitative temporal logics

— timed automata

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 2

Timed sytems

— systems whose functional correctness depends on satisfying temporal
constraints

— safety-critical systems (aviation, military)

— high-speed asynchronous circuits

— process control and fabrication systems

— communication protocols

— consumer electronics (increasingly so, incl. automotive control)

— timed synchronization protocols (e.g. in distributed systems)

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 3

Modeling

Any real system executes in physical time
= untimed models studied so far are merely an abstraction
e.g. temporal logic expresses qualitative, not quantitative properties
Still: most formalisms start from an untimed description on top of
which the time dimension is added later
— discrete time: all events happen at multiples of a time quantum
models: e.g., automata with an integer duration for each transition
— continuous time: events happen at arbitrary moments on a time
scale of reals
models: timed automata, timed Petri nets, languages with timing
constructs

Few formalisms are created specifically with time as first-class feature
e.g., duration calculus [Zhou, Hoare, Ravn '91], with operators:

— | f]: duration for which f holds (integral over time)

— concatenation of two time intervals

sample property: gas leak less than 30 seconds in any one-hour interval

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 4

Discrete and continuous time

What is the difference in expressiveness and efficiency ?
(How does a continuous-time system compare to its discretized model?)

[Henzinger, Manna, Pnueli '92]: discuss timed transition systems
(automata with lower/upper bounds on transitions)

— discretization preserves qualitative and some quantitative properties
e.g., invariance (Gp) and response (p = Fqg) with time limits

— for other properties, weaker discrete-time versions can be derived

[Asarin, Maler, Pnueli '98] discuss combinational circuits, with limited
time delays on the output of every gate:
— for acylic circuits, there is a discretization quantum which preserves
qualitative properties (ordering of events)

e.g., 1/n for a circuit with n signals
— there are cyclic circuits whose qualitative behavior is not preserved
by any discretization (e.g., ring of 3 inverters)

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 5

Classical theories for real-time systems

One of main problems: schedulability analysis
Given a set of processes and their parameters (periods, deadline) is
there a schedule that satisfies the deadlines ?

Rate-monotonic scheduling [Lehoczky, Liu, Layland]
— assigns priorities in increasing order of periods

(provably optimal)

— satisfiability test based on total CPU utilization (%)

— Advantages: simple method, optimal, fast analysis

— Disadvantages: restrictive model (periodic processes 4+ some exten-
sions); incomplete method, not applicable to high loads (> In2 ~ 70%)
We discus more general approaches.

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 6

Quantitative analysis of temporal properties

RTCTL (real-time CTL) can express quantitative temporal properties
(e.g., p does not appear earlier than 5 time units)
but not a more detailed analysis (what is the maximum delay of p)

= We define algorithms that can calculate such parameters
and have an efficient symbolic implementation (with BDDs)

— length of shortest and longest path between two sets of states
(expressed by predicates that characterize them)

e.g., longest execution time (schedulability)

— minimal/maximal number of occurrences of a property on a path
e.g., how many times the process is in the wait state

[Courcoubetis & Yannakakis; Campos, Clarke et al.]

Formal verification. Lecture 5 Marius Minea

Verification of timed systems

Shortest path between two sets of states

Breath-first search from start until final first reached or no new states
explored

In each iteration: () = states reached in ¢ steps R = set of all reached
states, grows until fixpoint

procedure min(start, final)
for (1 — O, R+ Q « start; QN final = 0;i++) do
Q «— Succ(Q); R — RUQ; // Q = frontier
if (R = R) then
return oo; // can't reach final
R« R'; // R = all reached states

return i,

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 8

Longest path between two sets of states

Determines maximal length of a path until final first reached starting
from start.

Assumes: system reduced to reachable states

We search longest path from start which does not reach final, by
backwards traversal from states that are not in final

R = initial points of paths that can stay outside final for i steps;
decreases until fixpoint

procedure max(start, final)
for (i — 0,R = S\ final, RN start # 0; i++) do
R/ — Pred(R) \ final;
if (R = R) then
return oo; // exists path not reaching final
R =R/
return z;

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 9

Temporal logics with explicit time

Temporal logics discussed so far (LTL, CTL) have temporal modalities
(next state, future), but w/o reference to explicit time

= Need additional features to express real-time properties
(e.g., time-bounded response)

LLarge variety of logics with explicit time, depending on various choices:
— linear or branching-time

— discrete or continuous time

— with timed operators or explicit time variables

Depending on choices = differences in expressivity, decidability,
algorithmic complexity

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 10

The temporal logic RTCTL

Simplifies expressing temporal properties in the discrete case by aug-
menting temporal operators with time intervals

Consider a path m = spgs1---. We define:

—m = fUpg e F.a<i<bAs =gAVi<i.sjl=f
—WZG[a,b]f@Vi.agiSbisi |=f
—7r:F[a’b]f(:)Eli.agigb/\sH:f

Example: AG(p — AF g 319):
p always followed by g within at most 3 time units.
For a = 0,b = oo, we obtain CTL semantics

Algorithms: recursive, by modification of fixpoint algorithms:

o Efu[a,b]g] = fANEX E[fu[a—l,b—l]g] (CL, b > O)
— E[fUp 9]l =gV (f NEXE[fU[g_119]) (b >0)
- E:fU[o,o]g] — 49

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 11

TPTL: Timed Propositional Temporal Logic

[Alur, Henzinger 1989]

— extension of propositional fragment of LTL (only path formulas)
— linear time, discrete (interpreted over state sequences)

— uses explicit variables for time, but with restrictions:

each variable is bound to time in a certain state (by a quantifier)

Example:: “each p is followed by a g within at most 10 time units”
Oz.(p — 0y.(¢ Ay <z + 10))

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 12

TPTL: comparison with other formalisms

Example: response in at most 10 time units to a continuous request:
Oz.(p — pUy.(¢ Ay < =+ 10))
Comparison with first-order temporal logic
Variable now represents current time in each state
O((p Anow =1z) - pU(gAnow =yAy <z 10))
then we fill in the appropriate quantifiers (error prone)
(Vx.((p Anow =) — pUTy.(g Anow =y Ay <z + 10))

Comparison with time-bounded operators
— TPTL can express such operators, €.9., o<5¢ expressed as:

.0y (y<x+5A09)
— operators with limits compare timepoints of two successive events

TPTL can compare times of two arbitrary events
Oz.(p — o(gNAoy.(rAy<zxz—+05)))

Formal verification. Lecture 5 Marius Minea

Verification of timed systems

TCTL: Timed CTL

13

[Alur, Courcoubetis, Dill, '90]

— branching time, continuous time, time-bounded operators

— interpreted on continuous-time computation trees

a path is a function p: IR — S from real numbers (time) to states

Syntax: ¢ ::=p| false | 1 — P2 | Jp1U~cto | V1 Un~cdo
(cu ~ unul din <,>,<,>,=), pe AP, c€ N

Semantics:
s = Jp1Ucdp < Jp, It ~ ¢ such that p(t) = ¢o
and for all 0 < ¢ < t, p(t') = ¢1

Satisfiability: undecidable (1)

Model checking (with timed automata as model): decidable:
based on constructing a finite equivalence relation between paths

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 14

Timed automata

One of most widely used formalisms for continous-time systems
[Alur & Dill '90]

— finite-state machine augmented with set of continous-time clocks
(real-valued, advance synchronously)

— states/transitions labeled with clock constraints

— a clock can be reset on executing a transition

= measures time passed since an event

y<—0
y< >4 x<9

z,y «— 0

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 15

Definition of timed automata

Set of clock constraints B(C) = conjunction of terms of form z < ¢,
c<z, z—y<c Withxz,ye C, <€ {<,<}, ceZ

A= (S, Sy,2,C,I1,T), where

— S = finite set of locations (states, nodes)

— So = set of initial locations

— 2 = alphabet of /abels for transitions

— C = set of clock variables

— I : 5 — B(C) associates to each state an invariant

(limiting the passage of time in that state)

—~ T CS8SxXxB(C)x 2% x S = set of transitions

Transition (s,a, g, R,s’) from s to s’ labeled by a is executed only if
guard g is true, and resets clocks in R C C

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 16

emantics of timed automata

Set of states: pair (s,v), where s € S = location
and v : C — IR is a clock assignment

— automaton can stay in a state as long as invariant is satisfied

(can leave state but cannot be forced unless invariant false)

— or can (but must not) execute instantaneous transitions when asso-
Ciated guard is true

Two types of transitions:

— action: (s,v) = (s',v’) if there exists a transition (s,a,g,R,s') € T,
the guard g(v) is true for assignment v, and v’ is obtained from v by
resetting clocks from R: v/ = v[R « 0].

— passage of time: (s,v) 4, (s,v") if v = v+d (V' (z) = v(z)+d, Vx € O),
si I(s)(v+ ¢€) true Ve € [0,d] (invariant is preserved)

= transition system with infinitely many states

d d
Paths of the form (sp,vg) — (sg,v1) — (s1,v7) %3 (s1,10) 3 ...

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 17

Parallel composition of timed automata

Execute synchronous transitions if labls match, separate transitions
otherwise

Let A1 = (S51,501,21,C1,11,T1) and A = (52, S02,22,C>, I2,15),
with C1 N Cy = 0.

Define A = Aq1||Ap = (571 X Sp,501 X Sp2,21 U225, C1UCH, I, T), where:
— I((s1,82)) = I1(s51) N I2(s2)

— if <81,a,gl,R1,8/1> € T7 and <82,a,gg,R2,8/2> €T, Cua€21MN2o then
((s1,82),a,91 A g2, R1 URp,(s7,s5)) €T (synchronization)
—if <81,a1,gl,R1,8,1> € 17, with a € X1\ X5, then Vsy € S5,
((51,82),a1,91,R1,(s,82)) €T

—if <82,a2,gg,R2,8/2> € 1o, with a € 25\ X4, then Vs € 51,

((52,81),a2,92, Ro, (s5,51)) €T

More general: with synchronication function to match transition labels

Formal verification. Lecture 5 Marius Minea

Verification of timed systems

Example: mutual exclusion

18

Fischer's mutual exclusion protocol
correctness based on respecting time constraints

Synchronization: pairs of transitions a? and a!

N2

[1! [2!

Can prove: correct if time constants (here 1 and 2) have this ordering.

Formal verification. Lecture 5

Marius Minea

Verification of timed systems 19

Example: Modeling asynchronous circuits

Continuous-time model = more precise than discrete time; appropriate
for modeling asynchronous and transient behavior

E.g. delay element: propagates input to output
— if input pulse not shorter than |
— with delay at most u

x <l .
01 (unstable@? </> 11 (stable)
x<+— 0 f
x>1 x>1
Ay T < l
00 (stable) </> @\g} 10 (unstable)
z<+—0

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 20

Finite representations for timed automata

State = pair (s,v) of location and clock assignment
— state space is infinite (even uncountable)

But: we cannot observe behavior with arbitray precision
— constraints from automaton have integer time limits
— formulas of temporal logic also have integer constants

Questions:

— when are two states (s,v) and (s,v") with same location, but different
clock assignments equivalent 7

— and is there a finite number of equivalence classes 7

Two approaches:
— time regions = region graph = finite automaton
— time zones = geometric constraints, symbolic exploration

Formal verification. Lecture 5 Marius Minea

Verification of timed systemls__aegion g ra ph I\/Iotivation 21

When are two states (s,v) and (s,v’) equivalent ?

1. if same transitions can be taken from both states
— conditions on transitions can have arbitrary integer time bounds
e.g. there may be transitions a with x >4 and b with x < 5
(s,r =4.2) and (s,x = 4.7) can both execute either a or b
(s,r = 4.2) and (s, = 5.1) are not equivalent
= must have same integer part for all clocks

(s, = 4) cannot execute a, but (s, = 4.1) can
= fractional parts must both be nonzero or both zero

2. must execute transitions in same order

consider transitions a with £ > 2 and b with y > 3.
from state (s, = 1.5,y = 2.7) can execute b before a
from state (s, = 1.4,y = 2.3) can execute a before b
— states are not equivalent

= clocks must have same ordering for fractional parts

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 22

Region graph. Definition

[Alur & Dill '90]: Define v ~ v if:

—VzeC.|lv(z)] = V()] V(v(x)] > cex AV (z)] > cz) where ¢z € Z is
largest constant with which x is compared in automaton

(integer parts of clocks are either equal in both assignments or both
exceed largest constant)

—Va,y € C, [v(z)] < ez, [v(y)] < ey, {v(@)} < {v(¥)} & {V(@)} < {0 (1)}
(fractional parts of clocks have same order in both assignments)
—VzeC cu |v(z)] <c, {v(z)} =0« {J/(x)} =0

= region associated with state (s,v) = set of states (s,v’) with v ~ v’.
= representation with finite number of equivalence classes

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 23

region graph (cont’'d)

Y
3‘/
2
1 :
EX.: region graph for two clocks
0 3 T and maximal constant ¢ =3

Regions are:

— 0-dimensional: points with integer coordinates, z,y € {0,1,2,3}

— one-dimensional: segments/diagonals; open-ended segments (> 3)
— two-dimensional: bounded (triangles) or not (rectangular stripes)

Fro mtwo states (points) in the same region:
— can execute same transitions
— by passage of time, same regions are traversed

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 24

Model checking for the region graph

[Alur, Courcoubetis, Dill '90]
For the timed automaton A, define finite-state automaton R(A):
— states of R(A) are regions
— there is a transition between r and »’ if and only if
r’ is the successor region of r with respect to time passage
there is an action transition (s,v) = (s,v) between two represen-

tatives (timed states) (s,v) € » and (s',v") € o’/

Can prove: TCTL model checking for a timed automaton reduces to
CTL model checking for the region graph
(with additional clocks for time bounds on operators)

Size of region graph: bounded by |C|! - 2/¢I[T,ca(2¢s + 2)
— exponential in number of clocks
— exponential in value of maximal time constant

Formal verification. Lecture 5 Marius Minea

Verification of timed systems

Finite representation with timed zones

25

Region graph: exponential in number of clocks
= often costly to build and analyze
= alternative representation with temporal inequalities

timed zone = condition from B(C)
eX. c<HAN1I<y<3N-2<zx—y<3
(represents a convex polyhedron in hyperspace]R|C|)

Y,

= a zoOhe = a convex union of regions

Formal verification. Lecture 5

Marius Minea

Verification of timed systems 26

Graph of timed zones

Consider zones which are maximal with respect to passage of time in
a location (up to time limit imposed by invariant)
= initial zones: (sq, I(sg) A Ai;(z; = x;)) with sq € Sp, z;,z; € C

Successors of a zone ¢ by a combined action 4 time transition:

— conjunct with guard g of transition: ¢ A g

— reset clocks associated with transition ¢[z < 0] = Jx¢p A (x = 0)
(existential quantification over x € R, and then conjunction with z = 0)
— take into account passage of time: ot =3t > 0. ¢(v —t)

(eliminate inequalities z < d)

— impose the invariant of destination state (conjunct with I(s"))

Overall:

¢’ = (¢ A g)[R O] » NI(s")

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 27

Representing zones: difference bound matrices

A zone = conjunction of inequalities x —y <c¢, xr <corc<«x
=- can be represented as square matrix of size |C| 4+ 1

(one line for each clock and one line for comparing with zero)
Matrix elements are integers from interval [—¢, ¢]:

value d for element (z,y) (z,y € C) means z —y <d

(plus one bit to distinguish strict from non-strict inequality)
first line and column: for comparisons with O

To obtain a finite number of zones: same observation as for regions
(concerning maximal time constant)

x < d pentru d > cmaer becomes z < oo

x < d pentru d < —cmar becomes x < —cmax

Formal verification. Lecture 5 Marius Minea

Verification of timed systems 28

Working with difference bound matrices

Example: x <5A1<yN-2<zx—y<3

O X Y,
0] <0 <0 <-1
x| <5 <0 <3
y|<oco <2 <0

— conjunction between two zones: smallest of two matrix elements
-+ relaxation to propagate clock constraints
(like shortest paths in graph)

— resetting a clock: copy line/column O into line/column for clock
— passage of time: set limits x < ¢c to z <

Timed verifiers (e.g., UPPAAL, KRONQOS) use this representation
or optimized variants thereof

Formal verification. Lecture 5 Marius Minea

