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– discrete and continuous time

– extensions of untimed model checking algorithms

– quantitative temporal logics

– timed automata
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Timed sytems

= systems whose functional correctness depends on satisfying temporal

constraints

– safety-critical systems (aviation, military)

– high-speed asynchronous circuits

– process control and fabrication systems

– communication protocols

– consumer electronics (increasingly so, incl. automotive control)

– timed synchronization protocols (e.g. in distributed systems)
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Modeling

Any real system executes in physical time
⇒ untimed models studied so far are merely an abstraction
e.g. temporal logic expresses qualitative, not quantitative properties
Still: most formalisms start from an untimed description on top of
which the time dimension is added later
– discrete time: all events happen at multiples of a time quantum

models: e.g., automata with an integer duration for each transition
– continuous time: events happen at arbitrary moments on a time
scale of reals

models: timed automata, timed Petri nets, languages with timing
constructs

Few formalisms are created specifically with time as first-class feature
e.g., duration calculus [Zhou, Hoare, Ravn ’91], with operators:
– bfc: duration for which f holds (integral over time)
– concatenation of two time intervals
sample property: gas leak less than 30 seconds in any one-hour interval
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Discrete and continuous time

What is the difference in expressiveness and efficiency ?

(How does a continuous-time system compare to its discretized model?)

[Henzinger, Manna, Pnueli ’92]: discuss timed transition systems

(automata with lower/upper bounds on transitions)

– discretization preserves qualitative and some quantitative properties

e.g., invariance (Gp) and response (p ⇒ Fq) with time limits

– for other properties, weaker discrete-time versions can be derived

[Asarin, Maler, Pnueli ’98] discuss combinational circuits, with limited

time delays on the output of every gate:

– for acylic circuits, there is a discretization quantum which preserves

qualitative properties (ordering of events)

e.g., 1/n for a circuit with n signals

– there are cyclic circuits whose qualitative behavior is not preserved

by any discretization (e.g., ring of 3 inverters)
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Classical theories for real-time systems

One of main problems: schedulability analysis

Given a set of processes and their parameters (periods, deadline) is

there a schedule that satisfies the deadlines ?

Rate-monotonic scheduling [Lehoczky, Liu, Layland]

– assigns priorities in increasing order of periods

(provably optimal)

– satisfiability test based on total CPU utilization (%)

– Advantages: simple method, optimal, fast analysis

– Disadvantages: restrictive model (periodic processes + some exten-

sions); incomplete method, not applicable to high loads (> ln2 ' 70%)

We discus more general approaches.
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Quantitative analysis of temporal properties

RTCTL (real-time CTL) can express quantitative temporal properties

(e.g., p does not appear earlier than 5 time units)

but not a more detailed analysis (what is the maximum delay of p)

⇒ We define algorithms that can calculate such parameters

and have an efficient symbolic implementation (with BDDs)

– length of shortest and longest path between two sets of states

(expressed by predicates that characterize them)

e.g., longest execution time (schedulability)

– minimal/maximal number of occurrences of a property on a path

e.g., how many times the process is in the wait state

[Courcoubetis & Yannakakis; Campos, Clarke et al.]
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Shortest path between two sets of states

Breath-first search from start until final first reached or no new states

explored

In each iteration: Q = states reached in i steps R = set of all reached

states, grows until fixpoint

procedure min(start, final)

for (i← 0, R← Q← start;Q ∩ final = ∅; i++) do

Q← Succ(Q);R′ ← R ∪Q; // Q = frontier

if (R′ = R) then

return ∞; // can’t reach final

R← R′; // R = all reached states

return i;
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Longest path between two sets of states

Determines maximal length of a path until final first reached starting

from start.

Assumes: system reduced to reachable states

We search longest path from start which does not reach final, by

backwards traversal from states that are not in final

R = initial points of paths that can stay outside final for i steps;

decreases until fixpoint

procedure max(start, final)

for (i← 0, R = S \ final;R ∩ start 6= ∅; i++) do

R′ ← Pred(R) \ final;

if (R′ = R) then

return ∞; // exists path not reaching final

R = R′;
return i;
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Temporal logics with explicit time

Temporal logics discussed so far (LTL, CTL) have temporal modalities

(next state, future), but w/o reference to explicit time

⇒ Need additional features to express real-time properties

(e.g., time-bounded response)

Large variety of logics with explicit time, depending on various choices:

– linear or branching-time

– discrete or continuous time

– with timed operators or explicit time variables

Depending on choices ⇒ differences in expressivity, decidability,

algorithmic complexity
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The temporal logic RTCTL

Simplifies expressing temporal properties in the discrete case by aug-

menting temporal operators with time intervals

Consider a path π = s0s1 · · ·. We define:

– π |= fU[a,b]g ⇔ ∃i . a ≤ i ≤ b ∧ si |= g ∧ ∀j < i . sj |= f

– π |= G[a,b]f ⇔ ∀i . a ≤ i ≤ b⇒ si |= f

– π |= F[a,b]f ⇔ ∃i . a ≤ i ≤ b ∧ si |= f

Example: AG(p→ AF[0,3]q):

p always followed by q within at most 3 time units.

For a = 0, b =∞, we obtain CTL semantics

Algorithms: recursive, by modification of fixpoint algorithms:

– E[fU[a,b]g] = f ∧EXE[fU[a−1,b−1]g] (a, b > 0)

– E[fU[0,b]g] = g ∨ (f ∧EXE[fU[0,b−1]g]) (b > 0)

– E[fU[0,0]g] = g
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TPTL: Timed Propositional Temporal Logic

[Alur, Henzinger 1989]

– extension of propositional fragment of LTL (only path formulas)

– linear time, discrete (interpreted over state sequences)

– uses explicit variables for time, but with restrictions:

each variable is bound to time in a certain state (by a quantifier)

Example:: “each p is followed by a q within at most 10 time units”

x.(p→ �y.(q ∧ y ≤ x + 10))
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TPTL: comparison with other formalisms

Example: response in at most 10 time units to a continuous request:

x.(p→ pUy.(q ∧ y ≤ x + 10))

Comparison with first-order temporal logic

Variable now represents current time in each state

((p ∧ now = x)→ pU(q ∧ now = y ∧ y ≤ x + 10))

then we fill in the appropriate quantifiers (error prone)

∀x.((p ∧ now = x)→ pU∃y.(q ∧ now = y ∧ y ≤ x + 10))

Comparison with time-bounded operators

– TPTL can express such operators, e.g., �≤5φ expressed as:

x. � y.(y ≤ x + 5 ∧ φ)

– operators with limits compare timepoints of two successive events

TPTL can compare times of two arbitrary events

x.(p→ �(q ∧ �y.(r ∧ y ≤ x + 5)))
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TCTL: Timed CTL

[Alur, Courcoubetis, Dill, ’90]

– branching time, continuous time, time-bounded operators

– interpreted on continuous-time computation trees

a path is a function ρ : IR→ S from real numbers (time) to states

Syntax: φ ::= p | false | φ1 → φ2 | ∃φ1U∼cφ2 | ∀φ1U∼cφ2

(cu ∼ unul din <, >,≤,≥,=), p ∈ AP , c ∈ IN

Semantics:

s |= ∃φ1U∼cφ2 ⇔ ∃ρ, ∃t ∼ c such that ρ(t) |= φ2

and for all 0 ≤ t′ < t, ρ(t′) |= φ1

Satisfiability: undecidable (!)

Model checking (with timed automata as model): decidable:

based on constructing a finite equivalence relation between paths
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Timed automata

One of most widely used formalisms for continous-time systems

[Alur & Dill ’90]

= finite-state machine augmented with set of continous-time clocks

(real-valued, advance synchronously)

– states/transitions labeled with clock constraints

– a clock can be reset on executing a transition

⇒ measures time passed since an event
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y≤7
x≤9

y≥3 -
y ← 0
x≥4�

x, y ← 0
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Definition of timed automata

Set of clock constraints B(C) = conjunction of terms of form x ≺ c,

c ≺ x, x− y ≺ c, with x, y ∈ C, ≺∈ {<,≤}, c ∈ ZZ

A = (S, S0,Σ, C, I, T ), where

– S = finite set of locations (states, nodes)

– S0 = set of initial locations

– Σ = alphabet of labels for transitions

– C = set of clock variables

– I : S → B(C) associates to each state an invariant

(limiting the passage of time in that state)

– T ⊆ S ×Σ× B(C)× 2C × S = set of transitions

Transition 〈s, a, g, R, s′〉 from s to s′ labeled by a is executed only if

guard g is true, and resets clocks in R ⊆ C
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Semantics of timed automata

Set of states: pair (s, v), where s ∈ S = location

and v : C → IR is a clock assignment

– automaton can stay in a state as long as invariant is satisfied

(can leave state but cannot be forced unless invariant false)

– or can (but must not) execute instantaneous transitions when asso-

ciated guard is true

Two types of transitions:

– action: (s, v)
a→ (s′, v′) if there exists a transition 〈s, a, g, R, s′〉 ∈ T ,

the guard g(v) is true for assignment v, and v′ is obtained from v by

resetting clocks from R: v′ = v[R← 0].

– passage of time: (s, v)
d→ (s, v′) if v′ = v+d (v′(x) = v(x)+d, ∀x ∈ C),

şi I(s)(v + ε) true ∀ε ∈ [0, d] (invariant is preserved)

⇒ transition system with infinitely many states

Paths of the form (s0, v0)
d1→ (s0, v1)

a1→ (s1, v′1)
d2→ (s1, v2)

a2→ . . .
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Parallel composition of timed automata

Execute synchronous transitions if labls match, separate transitions

otherwise

Let A1 = (S1, S01,Σ1, C1, I1, T1) and A2 = (S2, S02,Σ2, C2, I2, T2),

with C1 ∩ C2 = ∅.
Define A = A1||A2 = (S1× S2, S01× S02,Σ1 ∪Σ2, C1 ∪C2, I, T ), where:

– I((s1, s2)) = I1(s1) ∧ I2(s2)

– if 〈s1, a, g1, R1, s′1〉 ∈ T1 and 〈s2, a, g2, R2, s′2〉 ∈ T2, cu a ∈ Σ1∩Σ2 then

〈(s1, s2), a, g1 ∧ g2, R1 ∪R2, (s′1, s′2)〉 ∈ T (synchronization)

– if 〈s1, a1, g1, R1, s′1〉 ∈ T1, with a ∈ Σ1 \Σ2, then ∀s2 ∈ S2,

〈(s1, s2), a1, g1, R1, (s′1, s2)〉 ∈ T

– if 〈s2, a2, g2, R2, s′2〉 ∈ T2, with a ∈ Σ2 \Σ1, then ∀s1 ∈ S1,

〈(s2, s1), a2, g2, R2, (s′2, s1)〉 ∈ T

More general: with synchronication function to match transition labels
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Example: mutual exclusion

Fischer’s mutual exclusion protocol

correctness based on respecting time constraints

Synchronization: pairs of transitions a? and a!

��
��N1

l0? -
x← 0 ��

��T1

x≤1

?

x≤1
l1!

x←0

6

l0?

x←0

��
��

E1

�
x>2 l1?

x←0 ��
��

C1

6

l0!
��
��L1

-��l1!
@

@
@

@R

l0?

@
@

@
@I

l1?

��
��L2

� ��l2!
�

�
�

�	 l2?
�

�
�

��l0?

-
l2?

� l1?

��
��

L0
6��
l0!

��
��N2

l0? -
y ← 0 ��

��T2

y≤1

?

y≤1
l2!

y←0

6

l0?

y←0

��
��

E2

� y>2 l2?

y←0 ��
��

C2

6

l0!

Can prove: correct if time constants (here 1 and 2) have this ordering.
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Example: Modeling asynchronous circuits

Continuous-time model ⇒ more precise than discrete time; appropriate

for modeling asynchronous and transient behavior

E.g. delay element: propagates input to output

– if input pulse not shorter than l

– with delay at most u
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Finite representations for timed automata

State = pair (s, v) of location and clock assignment

⇒ state space is infinite (even uncountable)

But: we cannot observe behavior with arbitray precision

– constraints from automaton have integer time limits

– formulas of temporal logic also have integer constants

Questions:

– when are two states (s, v) and (s, v′) with same location, but different

clock assignments equivalent ?

– and is there a finite number of equivalence classes ?

Two approaches:

– time regions ⇒ region graph = finite automaton

– time zones ⇒ geometric constraints, symbolic exploration
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Region graph: Motivation

When are two states (s, v) and (s, v′) equivalent ?

1. if same transitions can be taken from both states
– conditions on transitions can have arbitrary integer time bounds
e.g. there may be transitions a with x > 4 and b with x < 5

(s, x = 4.2) and (s, x = 4.7) can both execute either a or b

(s, x = 4.2) and (s, x = 5.1) are not equivalent
⇒ must have same integer part for all clocks

(s, x = 4) cannot execute a, but (s, x = 4.1) can
⇒ fractional parts must both be nonzero or both zero

2. must execute transitions in same order
consider transitions a with x ≥ 2 and b with y ≥ 3.
from state (s, x = 1.5, y = 2.7) can execute b before a

from state (s, x = 1.4, y = 2.3) can execute a before b

⇒ states are not equivalent
⇒ clocks must have same ordering for fractional parts
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Region graph. Definition

[Alur & Dill ’90]: Define v ' v′ if:
– ∀x ∈ C . bv(x)c = bv′(x)c ∨ (bv(x)c ≥ cx ∧ bv′(x)c ≥ cx) where cx ∈ ZZ is

largest constant with which x is compared in automaton

(integer parts of clocks are either equal in both assignments or both

exceed largest constant)

– ∀x, y ∈ C, bv(x)c < cx, bv(y)c < cy, {v(x)} ≤ {v(y)} ⇔ {v′(x)} ≤ {v′(y)}
(fractional parts of clocks have same order in both assignments)

– ∀x ∈ C cu bv(x)c ≤ c, {v(x)} = 0⇔ {v′(x)} = 0

⇒ region associated with state (s, v) = set of states (s, v′) with v ' v′.
⇒ representation with finite number of equivalence classes
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region graph (cont’d)

-0

1

2

3

y

1 2 3 x

6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

t t t t
t t t t
t t t t
t t t t

Ex.: region graph for two clocks

and maximal constant c = 3

Regions are:

– 0-dimensional: points with integer coordinates, x, y ∈ {0,1,2,3}
– one-dimensional: segments/diagonals; open-ended segments (≥ 3)

– two-dimensional: bounded (triangles) or not (rectangular stripes)

Fro mtwo states (points) in the same region:

– can execute same transitions

– by passage of time, same regions are traversed
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Model checking for the region graph

[Alur, Courcoubetis, Dill ’90]

For the timed automaton A, define finite-state automaton R(A):

– states of R(A) are regions

– there is a transition between r and r′ if and only if

r′ is the successor region of r with respect to time passage

there is an action transition (s, v)
a→ (s′, v′) between two represen-

tatives (timed states) (s, v) ∈ r and (s′, v′) ∈ r′

Can prove: TCTL model checking for a timed automaton reduces to

CTL model checking for the region graph

(with additional clocks for time bounds on operators)

Size of region graph: bounded by |C|! · 2|C|
∏

x∈C(2cx + 2)

– exponential in number of clocks

– exponential in value of maximal time constant
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Finite representation with timed zones

Region graph: exponential in number of clocks

⇒ often costly to build and analyze

⇒ alternative representation with temporal inequalities

timed zone = condition from B(C)

ex. x ≤ 5 ∧ 1 ≤ y ≤ 3 ∧ −2 ≤ x− y ≤ 3

(represents a convex polyhedron in hyperspace IR|C|)

-
x

6
y

�
�

�
�

⇒ a zone = a convex union of regions
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Graph of timed zones

Consider zones which are maximal with respect to passage of time in

a location (up to time limit imposed by invariant)

⇒ initial zones: 〈s0, I(s0) ∧
∧

i6=j(xi = xj)〉 with s0 ∈ S0, xi, xj ∈ C

Successors of a zone φ by a combined action + time transition:

– conjunct with guard g of transition: φ ∧ g

– reset clocks associated with transition φ[x← 0] = ∃xφ ∧ (x = 0)

(existential quantification over x ∈ R, and then conjunction with x = 0)

– take into account passage of time: φ⇑ = ∃t > 0 . φ(v − t)

(eliminate inequalities x ≺ d)

– impose the invariant of destination state (conjunct with I(s′))

Overall:

φ′ = (φ ∧ g)[R← 0] ⇑ ∧I(s′)
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Representing zones: difference bound matrices

A zone = conjunction of inequalities x− y ≺ c, x ≺ c or c ≺ x

⇒ can be represented as square matrix of size |C|+ 1

(one line for each clock and one line for comparing with zero)

Matrix elements are integers from interval [−c, c]:

value d for element (x, y) (x, y ∈ C) means x− y ≤ d

(plus one bit to distinguish strict from non-strict inequality)

first line and column: for comparisons with 0

To obtain a finite number of zones: same observation as for regions

(concerning maximal time constant)

x ≺ d pentru d > cmax becomes x ≺ ∞
x ≺ d pentru d < −cmax becomes x ≺ −cmax
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Working with difference bound matrices

Example: x ≤ 5 ∧ 1 ≤ y ∧ −2 ≤ x− y ≤ 3
0 x y

0 ≤ 0 ≤ 0 ≤ −1
x ≤ 5 ≤ 0 ≤ 3
y ≤ ∞ ≤ 2 ≤ 0

– conjunction between two zones: smallest of two matrix elements

+ relaxation to propagate clock constraints

(like shortest paths in graph)

– resetting a clock: copy line/column 0 into line/column for clock

– passage of time: set limits x ≺ c to x ≺ ∞

Timed verifiers (e.g., UPPAAL, KRONOS) use this representation

or optimized variants thereof
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