Verification of timed systems

Verification of timed systems

constructs

Formal verification. Lecture 5

Verification of timed systems

Any real system executes in physical time

which the time dimension is added later

- concatenation of two time intervals

⇒ untimed models studied so far are merely an abstraction e.g. temporal logic expresses qualitative, not quantitative properties

Still: most formalisms start from an untimed description on top of

models: e.g., automata with an integer duration for each transition

models: timed automata, timed Petri nets, languages with timing

Few formalisms are created specifically with time as first-class feature

sample property: gas leak less than 30 seconds in any one-hour interval

e.g., duration calculus [Zhou, Hoare, Ravn '91], with operators: -|f|: duration for which f holds (integral over time)

- continuous time: events happen at arbitrary moments on a time

- discrete time: all events happen at multiples of a time quantum

Modeling

Verification of timed systems

2 November 2005

- discrete and continuous time
- extensions of untimed model checking algorithms
- quantitative temporal logics

= systems whose functional correctness depends on satisfying temporal constraints

Timed sytems

- safety-critical systems (aviation, military)
- high-speed asynchronous circuits
- process control and fabrication systems
- communication protocols
- consumer electronics (increasingly so, incl. automotive control)
- timed synchronization protocols (e.g. in distributed systems)

- timed automata

Formal verification. Lecture 5

Marius Minea

Formal verification. Lecture 5

Marius Minea

Verification of timed systems

Discrete and continuous time

What is the difference in expressiveness and efficiency? (How does a continuous-time system compare to its discretized model?)

[Henzinger, Manna, Pnueli '92]: discuss timed transition systems (automata with lower/upper bounds on transitions)

- discretization preserves *qualitative* and some *quantitative* properties e.g., invariance (Gp) and response (p \Rightarrow Fq) with time limits
- for other properties, weaker discrete-time versions can be derived

[Asarin, Maler, Pnueli '98] discuss combinational circuits, with limited time delays on the output of every gate:

- for acylic circuits, there is a discretization quantum which preserves qualitative properties (ordering of events)
- e.g., 1/n for a circuit with n signals
- there are cyclic circuits whose qualitative behavior is not preserved by any discretization (e.g., ring of 3 inverters)

Verification of timed systems

Classical theories for real-time systems

One of main problems: schedulability analysis

Given a set of processes and their parameters (periods, deadline) is there a schedule that satisfies the deadlines ?

Rate-monotonic scheduling

[Lehoczky, Liu, Layland]

Marius Minea

- assigns priorities in increasing order of periods (provably optimal)
- satisfiability test based on total CPU utilization (%)
- Advantages: simple method, optimal, fast analysis
- Disadvantages: restrictive model (periodic processes + some extensions); incomplete method, not applicable to high loads ($> ln2 \simeq 70\%$) We discus more general approaches.

- minimal/maximal number of occurrences of a property on a path e.g., how many times the process is in the wait state

[Courcoubetis & Yannakakis; Campos, Clarke et al.]

Formal verification. Lecture 5 Marius Minea

Formal verification. Lecture 5

Formal verification. Lecture 5 Marius Minea

Marius Minea

Quantitative analysis of temporal properties

RTCTL (real-time CTL) can express quantitative temporal properties (e.g., p does not appear earlier than 5 time units) but not a more detailed analysis (what is the maximum delay of p)

⇒ We define algorithms that can calculate such parameters and have an efficient *symbolic* implementation (with BDDs)

- length of shortest and longest path between two sets of states (expressed by predicates that characterize them) e.g., longest execution time (schedulability)

Shortest path between two sets of states

Breath-first search from start until final first reached or no new states explored

In each iteration: Q = states reached in i steps R = set of all reachedstates, grows until fixpoint

```
procedure min(start, final)
for (i \leftarrow 0, R \leftarrow Q \leftarrow start; Q \cap final = \emptyset; i++) do
   Q \leftarrow \operatorname{Succ}(Q); R' \leftarrow R \cup Q; // Q = \text{frontier}
   if (R' = R) then
      return \infty; // can't reach final
   R \leftarrow R': // R = all reached states
return i;
```

Formal verification. Lecture 5 Marius Minea

Longest path between two sets of states

Determines maximal length of a path until final first reached starting from start.

Assumes: system reduced to reachable states

We search longest path from start which does not reach final, by backwards traversal from states that are not in final

R = initial points of paths that can stay outside final for i steps;decreases until fixpoint

```
procedure max(start, final)
for (i \leftarrow 0, R = S \setminus final; R \cap start \neq \emptyset; i++) do
   R' \leftarrow \mathsf{Pred}(R) \setminus final;
  if (R' = R) then
      return \infty: // exists path not reaching final
   R = R';
return i;
```

Formal verification. Lecture 5

Temporal logics with explicit time

Temporal logics discussed so far (LTL, CTL) have temporal modalities (next state, future), but w/o reference to explicit time

⇒ Need additional features to express real-time properties (e.g., time-bounded response)

Large variety of logics with explicit time, depending on various choices:

- linear or branching-time
- discrete or continuous time
- with timed operators or explicit time variables

Depending on choices \Rightarrow differences in expressivity, decidability. algorithmic complexity

Formal verification. Lecture 5 Marius Minea

Verification of timed systems

The temporal logic RTCTL

Simplifies expressing temporal properties in the discrete case by augmenting temporal operators with time intervals

```
Consider a path \pi = s_0 s_1 \cdots. We define:
-\pi \models f \mathbf{U}_{[a \ b]} g \Leftrightarrow \exists i \ . \ a \leq i \leq b \land s_i \models g \land \forall j < i \ . \ s_i \models f
```

$$-\pi \models \mathbf{G}_{[a,b]}f \Leftrightarrow \forall i . a \leq i \leq b \Rightarrow s_i \models f$$
$$-\pi \models \mathbf{F}_{[a,b]}f \Leftrightarrow \exists i . a \leq i \leq b \land s_i \models f$$

Example: $AG(p \rightarrow AF_{[0,3]}q)$:

p always followed by q within at most 3 time units.

For $a = 0, b = \infty$, we obtain CTL semantics

Algorithms: recursive, by modification of fixpoint algorithms:

$$\begin{split} &- \operatorname{E}[f \operatorname{U}_{[a,b]}g] = f \wedge \operatorname{EX} \operatorname{E}[f \operatorname{U}_{[a-1,b-1]}g] & (a,b>0) \\ &- \operatorname{E}[f \operatorname{U}_{[0,b]}g] = g \vee (f \wedge \operatorname{EX} \operatorname{E}[f \operatorname{U}_{[0,b-1]}g]) & (b>0) \\ &- \operatorname{E}[f \operatorname{U}_{[0 \text{ ol}]g}] = g \end{split}$$

Formal verification. Lecture 5 Marius Minea Verification of timed systems

10

TPTL: Timed Propositional Temporal Logic

[Alur, Henzinger 1989]

Formal verification. Lecture 5

- extension of propositional fragment of LTL (only path formulas)
- linear time, discrete (interpreted over state sequences)
- uses explicit variables for time, but with restrictions:

each variable is bound to time in a certain state (by a quantifier)

Example:: "each p is followed by a q within at most 10 time units"

```
\Box x.(p \rightarrow \Diamond y.(q \land y \leq x + 10))
```

Verification of timed systems

Marius Minea

11

Marius Minea

TPTL: comparison with other formalisms

Example: response in at most 10 time units to a continuous request:

$$\Box x.(p \rightarrow p U y.(q \land y < x + 10))$$

Comparison with first-order temporal logic

Variable now represents current time in each state

 $\Box((p \land now = x) \rightarrow p\mathbf{U}(q \land now = y \land y < x + 10))$

then we fill in the appropriate quantifiers (error prone)

 $\exists \forall x. ((p \land now = x) \rightarrow p \mathbf{U} \exists y. (q \land now = y \land y < x + 10))$

Comparison with time-bounded operators

– TPTL can express such operators, e.g., $\diamond_{<5}\phi$ expressed as:

$$x. \diamond y. (y < x + 5 \land \phi)$$

- operators with limits compare timepoints of two successive events TPTL can compare times of two arbitrary events

$$\Box x.(p \to \Diamond (q \land \Diamond y.(r \land y < x + 5)))$$

Formal verification. Lecture 5

Marius Minea

12

14

Marius Minea

17

Marius Minea

18

TCTL: Timed CTL

[Alur. Courcoubetis, Dill. '90]

- branching time, continuous time, time-bounded operators
- interpreted on continuous-time computation trees
- a path is a function $\rho: \mathbb{R} \to S$ from real numbers (time) to states

Syntax: $\phi ::= p \mid false \mid \phi_1 \rightarrow \phi_2 \mid \exists \phi_1 \mathbf{U}_{\sim c} \phi_2 \mid \forall \phi_1 \mathbf{U}_{\sim c} \phi_2$ (cu \sim unul din <,>,<,>,=), $p \in AP$, $c \in \mathbb{N}$

Semantics:

 $s \models \exists \phi_1 \mathbf{U}_{\sim c} \phi_2 \Leftrightarrow \exists \rho, \exists t \sim c \text{ such that } \rho(t) \models \phi_2$ and for all 0 < t' < t, $\rho(t') \models \phi_1$

Satisfiability: undecidable (!)

Model checking (with timed automata as model): decidable: based on constructing a finite equivalence relation between paths

Timed automata

One of most widely used formalisms for continous-time systems [Alur & Dill '90]

- = finite-state machine augmented with set of continous-time *clocks* (real-valued, advance synchronously)
- states/transitions labeled with clock constraints
- a clock can be reset on executing a transition
- ⇒ measures time passed since an event

Formal verification. Lecture 5 Marius Minea Formal verification. Lecture 5

13

Verification of timed systems

Parallel composition of timed automata

Set of states: pair (s, v), where $s \in S = \text{location}$ and $v: C \to \mathbb{R}$ is a clock assignment

 $\overset{\text{Verification of timed systems}}{\text{Semantics of timed automata}}$

- automaton can stay in a state as long as invariant is satisfied (can leave state but cannot be forced unless invariant false)
- or can (but must not) execute instantaneous transitions when associated quard is true

Two types of transitions:

- action: $(s,v) \stackrel{a}{\rightarrow} (s',v')$ if there exists a transition $(s,a,q,R,s') \in T$, the guard g(v) is true for assignment v, and v' is obtained from v by resetting clocks from R: $v' = v[R \leftarrow 0]$.
- passage of time: $(s,v) \stackrel{d}{\to} (s,v')$ if v'=v+d $(v'(x)=v(x)+d, \ \forall x \in C),$ și $I(s)(v + \epsilon)$ true $\forall \epsilon \in [0, d]$ (invariant is preserved)
- ⇒ transition system with infinitely many states

Paths of the form $(s_0, v_0) \stackrel{d_1}{\rightarrow} (s_0, v_1) \stackrel{a_1}{\rightarrow} (s_1, v_1') \stackrel{d_2}{\rightarrow} (s_1, v_2) \stackrel{a_2}{\rightarrow} \dots$

Formal verification. Lecture 5 Marius Minea Execute synchronous transitions if labls match, separate transitions

otherwise

Let $A_1 = (S_1, S_{01}, \Sigma_1, C_1, I_1, T_1)$ and $A_2 = (S_2, S_{02}, \Sigma_2, C_2, I_2, T_2)$, with $C_1 \cap C_2 = \emptyset$.

Define $A = A_1 || A_2 = (S_1 \times S_2, S_{01} \times S_{02}, \Sigma_1 \cup \Sigma_2, C_1 \cup C_2, I, T),$ where: $-I((s_1,s_2)) = I_1(s_1) \wedge I_2(s_2)$

- if $\langle s_1, a, g_1, R_1, s_1' \rangle \in T_1$ and $\langle s_2, a, g_2, R_2, s_2' \rangle \in T_2$, cu $a \in \Sigma_1 \cap \Sigma_2$ then $\langle (s_1, s_2), a, g_1 \land g_2, R_1 \cup R_2, (s'_1, s'_2) \rangle \in T$ (synchronization) - if $\langle s_1, a_1, g_1, R_1, s_1' \rangle \in T_1$, with $a \in \Sigma_1 \setminus \Sigma_2$, then $\forall s_2 \in S_2$,

 $\langle (s_1, s_2), a_1, g_1, R_1, (s'_1, s_2) \rangle \in T$

- if $\langle s_2, a_2, g_2, R_2, s_2' \rangle \in T_2$, with $a \in \Sigma_2 \setminus \Sigma_1$, then $\forall s_1 \in S_1$, $\langle (s_2, s_1), a_2, g_2, R_2, (s_2', s_1) \rangle \in T$

More general: with synchronication function to match transition labels

Formal verification. Lecture 5 Marius Minea

Definition of timed automata

Set of clock constraints $\mathcal{B}(C) = \text{conjunction of terms of form } x \prec c$, $c \prec x$, $x - y \prec c$, with $x, y \in C$, $\prec \in \{<, \leq\}$, $c \in \mathbb{Z}$

 $A = (S, S_0, \Sigma, C, I, T)$, where

- -S =finite set of locations (states, nodes)
- $-S_0 = \text{set of initial locations}$
- $-\Sigma$ = alphabet of *labels* for transitions
- -C = set of clock variables
- $-I: S \to \mathcal{B}(C)$ associates to each state an *invariant*

(limiting the passage of time in that state)

 $-T \subseteq S \times \Sigma \times \mathcal{B}(C) \times 2^C \times S = \text{set of transitions}$

Transition $\langle s, a, q, R, s' \rangle$ from s to s' labeled by a is executed only if *quard* q is true, and *resets* clocks in $R \subseteq C$

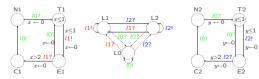
Formal verification. Lecture 5

Verification of timed systems

Example: mutual exclusion

Fischer's mutual exclusion protocol correctness based on respecting time constraints

Synchronization: pairs of transitions a? and a!



Can prove: correct if time constants (here 1 and 2) have this ordering.

Formal verification. Lecture 5

Marius Minea

23

21

Continuous-time model \Rightarrow more precise than discrete time; appropriate for modeling asynchronous and transient behavior

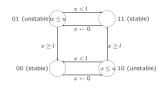
E.g. delay element: propagates input to output

- if input pulse not shorter than l
- with delay at most u

Verification of timed systems

[Alur & Dill '90]: Define $v \simeq v'$ if:

exceed largest constant)



Formal verification. Lecture 5 Marius Minea

Finite representations for timed automata

 ${\rm State} = {\rm pair}\; (s,v) \; {\rm of} \; {\rm location} \; {\rm and} \; {\rm clock} \; {\rm assignment}$

⇒ state space is infinite (even uncountable)

But: we cannot observe behavior with arbitray precision

- constraints from automaton have integer time limits
- formulas of temporal logic also have integer constants

Questions:

19

22

- when are two states (s, v) and (s, v') with same location, but different clock assignments equivalent?
- and is there a *finite* number of equivalence classes ?

Two approaches:

- time regions ⇒ region graph = finite automaton
- time zones ⇒ geometric constraints, symbolic exploration

Formal verification. Lecture 5 Marius Minea

Verification of timed systems

region graph (cont'd)

3

Ex.: region graph for two clocks and maximal constant c = 3

Regions are:

- 0-dimensional: points with integer coordinates, $x, y \in \{0, 1, 2, 3\}$
- one-dimensional: segments/diagonals; open-ended segments (> 3)
- two-dimensional: bounded (triangles) or not (rectangular stripes)

Fro mtwo states (points) in the same region:

- can execute same transitions
- by passage of time, same regions are traversed

Formal verification. Lecture 5 Marius Minea

Region graph. Definition

 $-\forall x \in C$. $|v(x)| = |v'(x)| \lor (|v(x)| \ge c_x \land |v'(x)| \ge c_x)$ where $c_x \in \mathbb{Z}$ is

(integer parts of clocks are either equal in both assignments or both

 $-\forall x, y \in C, |v(x)| < c_x, |v(y)| < c_y, \{v(x)\} \le \{v(y)\} \Leftrightarrow \{v'(x)\} \le \{v'(y)\}$

 \Rightarrow region associated with state (s,v)= set of states (s,v') with $v\simeq v'.$ \Rightarrow representation with finite number of equivalence classes

(fractional parts of clocks have same order in both assignments)

largest constant with which x is compared in automaton

 $- \forall x \in C \text{ cu } |v(x)| \le c, \{v(x)\} = 0 \Leftrightarrow \{v'(x)\} = 0$

Formal verification. Lecture 5 Marius Minea

Verification of timed system Region graph: Motivation

When are two states (s, v) and (s, v') equivalent?

1. if same transitions can be taken from both states

- conditions on transitions can have arbitrary integer time bounds
- e.g. there may be transitions a with x > 4 and b with x < 5

(s, x = 4.2) and (s, x = 4.7) can both execute either a or b (s, x = 4.2) and (s, x = 5.1) are *not* equivalent

⇒ must have same integer part for all clocks

(s, x = 4) cannot execute a, but (s, x = 4.1) can

- ⇒ fractional parts must both be nonzero or both zero
- 2. must execute transitions in same order consider transitions a with $x \ge 2$ and b with $y \ge 3$. from state (s, x = 1.5, y = 2.7) can execute b before a
- from state (s, x = 1.4, y = 2.3) can execute a before b
- ⇒ states are not equivalent
- \Rightarrow clocks must have same ordering for fractional parts

Formal verification. Lecture 5

Marius Minea

24

 $\begin{array}{c} \text{Verification of timed systems} \\ \text{Model checking for the} \\ \text{region graph} \end{array}$

[Alur, Courcoubetis, Dill '90]

For the timed automaton A, define finite-state automaton R(A):

- states of R(A) are regions - there is a transition between r and r' if and only if
- r' is the *successor* region of r with respect to time passage there is an action transition $(s,v) \stackrel{a}{\to} (s',v')$ between two representatives (timed states) $(s,v) \in r$ and $(s',v') \in r'$

Can prove: TCTL model checking for a timed automaton reduces to CTL model checking for the region graph (with additional clocks for time bounds on operators)

Size of region graph: bounded by $|C|! \cdot 2^{|C|} \prod_{x \in C} (2c_x + 2)$

- exponential in number of clocks
- exponential in value of maximal time constant

Formal verification. Lecture 5

Marius Minea

Verification of timed systems

Verification of timed systems

Verification of timed systems

26

27

Finite representation with timed zones

Region graph: exponential in number of clocks

- ⇒ often costly to build and analyze
- ⇒ alternative representation with temporal inequalities

 $timed\ zone = condition\ from\ \mathcal{B}(C)$

ex. $x < 5 \land 1 < y < 3 \land -2 < x - y < 3$

(represents a convex polyhedron in hyperspace $\mathbb{R}^{|C|}$)

 \Rightarrow a zone = a convex union of regions

Formal verification. Lecture 5

Marius Minea

Verification of timed systems

Working with difference bound matrices

Example: $x \le 5 \land 1 \le y \land -2 \le x - y \le 3$

< 0 < 0 < -1 < 5 < 0 < 3 $y \leq \infty \leq 2 \leq 0$

- conjunction between two zones: smallest of two matrix elements

+ relaxation to propagate clock constraints

(like shortest paths in graph)

- resetting a clock: copy line/column 0 into line/column for clock

- passage of time: set limits $x \prec c$ to $x \prec \infty$

Timed verifiers (e.g., UPPAAL, KRONOS) use this representation or optimized variants thereof

Formal verification. Lecture 5

Marius Minea

Graph of timed zones

Consider zones which are maximal with respect to passage of time in a location (up to time limit imposed by invariant)

 \Rightarrow initial zones: $\langle s_0, I(s_0) \land \bigwedge_{i \neq j} (x_i = x_j) \rangle$ with $s_0 \in S_0, x_i, x_j \in C$

Successors of a zone ϕ by a combined action + time transition:

- conjunct with guard g of transition: $\phi \wedge g$
- reset clocks associated with transition $\phi[x \leftarrow 0] = \exists x \phi \land (x = 0)$
- (existential quantification over $x \in R$, and then conjunction with x = 0)
- take into account passage of time: $\phi \uparrow = \exists t > 0$. $\phi(v-t)$ (eliminate inequalities $x \prec d$)
- impose the invariant of destination state (conjunct with I(s'))

Overall:

$$\phi' = (\phi \land g)[R \leftarrow 0] \uparrow \land I(s')$$

Formal verification. Lecture 5 Marius Minea

Representing zones: difference bound matrices

A zone = conjunction of inequalities $x-y \prec c$, $x \prec c$ or $c \prec x$ \Rightarrow can be represented as square matrix of size |C|+1

(one line for each clock and one line for comparing with zero)

Matrix elements are integers from interval [-c, c]:

value d for element (x,y) $(x,y \in C)$ means x-y < d(plus one bit to distinguish strict from non-strict inequality)

first line and column: for comparisons with 0

To obtain a finite number of zones: same observation as for regions (concerning maximal time constant)

 $x \prec d$ pentru $d > c_{max}$ becomes $x \prec \infty$

 $x \prec d$ pentru $d < -c_{max}$ becomes $x \prec -c_{max}$

Formal verification. Lecture 5

Marius Minea