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- Propositional calculus

- Predicate calculus

- Decision procedures

- Resolution theorem proving
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Syntax of propositional logic

Symbols of propositional logic: atomic propositions p, q, r, · · ·,

logical connectors ¬ and →, and parantheses ( ).

Formulas of propositional logic:

– any atomic proposition is a formula

– if α is a formula, then (¬α) is a formula.

– if α and β are formulas, then (α→ β) is a formula.

Other known operators can be introduced as shorthands:

– (α ∧ β)
def
= (¬(α→ (¬β)))

– (α ∨ β)
def
= ((¬α)→ β)

– (α↔ β)
def
= ((α→ β) ∧ (β → α))

Simplified notation: without redundant parantheses;

precedence order defined as: ¬,∧,∨,→,↔; → is right-associative
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Valuation functions (truth assignments)

A valuation v is a function defined for all propositional formulas, with

values in {T,F} such that:

– v(p) is defined for any atomic proposition p.

– v(¬α) =

{

T if v(α) = F
F if v(α) = T

– v(α→ β) =

{

F if v(α) = Tşi v(β) = F
T otherwise

An interpretation = a valuation for the atomic propositions of a formula

An intrepretation satisfies a formula if the latter is evaluated to T

(we say that the interpretation is a model for that formula).

valid formula (tautology): true in all interpretations

satisfiable formula: true in at least one interpretation

unsatisfiable formula (contradiction): false in any interpretation
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Syntactic and semantic approach

Semantic approach: based on logical implication (logical truth)

H |= ϕ

A set of formulas H implies a formula ϕ if any truth function that

satisfies H (i.e., all formulas in H) also satisfies ϕ.

Syntactic approach: logical proof

– based on syntactic manipulation of formulas:

Is a theorem provable from a set of axioms, using deduction rules ?
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Axioms and deduction rules

Axion schemes for propositional logic:

A1: (α→ (β → α))

A2: ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))

A3: (((¬β)→ (¬α))→ (((¬β)→ α)→ β))

(called schemes (schemata) because axioms are obtained substituting

particular formulas of propositional logic)

We introduce a single deduction rule (modus ponens, MP):

From the formulas ϕ and ϕ→ ψ we can deduce ψ.
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Deduction

Let H be a set of formulas. We call deduction from H a sequence of

formulas A1, A2, · · · , An, such that:

1. Ai is an axiom, or

2. Ai is a formula from H, or

3. Ai follows by MP from two previous sequence items Aj, Ak where

j < i, k < i.

We say that An follows from H (is deducible, is a consequence): H ⊢ An

Example: we prove that (ϕ→ ϕ)

(1) ϕ→ ((ϕ→ ϕ)→ ϕ)) A1

(2) ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((ϕ→ (ϕ→ ϕ)→ (ϕ→ ϕ)) A2

(3) (ϕ→ (ϕ→ ϕ)→ (ϕ→ ϕ) MP(1,2)

(4) ϕ→ (ϕ→ ϕ) A1

(5) ϕ→ ϕ MP(3,4)
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Deduction theorem

Let H be a set of formulas and α, β two formulas.

Then H ⊢ α→ β if and only if H ∪ {α} ⊢ β.

- used as additional inference rule to simplify proofs

Other corollaries:

- if H ⊢ α and H ⊢ α→ β, then H ⊢ β

- if G ⊆ H and G ⊢ α, then H ⊢ α

- if H ⊢ G and G ⊢ α, then H ⊢ α
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Soundness and Completeness

establish the correspondence between the syntactic approach, based

on deduction, and the semantic approach, based on truth values.

Soundness: If H is a set of formulas, and α is a formula such that

H ⊢ α, then H |= α.

(Any thorem in propositional logic is a tautology)

Completeness: If H is a set of formulas, and α is a formula such that

H |= α, then H ⊢ α. (Any tautology is a theorem).

Proof: based on the following notions and auxiliary results:

A set of formulas H is inconsistent if there is a formula α such that

H ⊢ α and H ⊢ ¬α.

Any consistent set of formulas can be extended to a maximally con-

sistent set (adding any other formula makes it inconsistent)

A set of formulas is consistent if and only if it is satisfiable.
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First-order languages

The symbols of a first-order language are:

- parantheses ( )

- logical connectors ¬ and →

- the quantifier ∀ (universal quantifier)

- a set of identifiers v0, v1, · · · for variables

- a (possibly empty) set of symbols for constants

- for any n ≥ 1 a set of n-ary function symbols (of n arguments)

- for any n ≥ 1 a set of n-ary predicates (relations)

First-order languages with equality: contain = as special symbol in

addition to the above.
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First-order terms and formulas

Terms of a first-order language (defined by structural induction)

- any variable symbol vn

- any constant symbol c

- f(t1, · · · , tn), if f is an n-ary function symbol and t1, · · · , tn are terms

(Well-formed) Formulas of a first-order language:

- P(t1, · · · , tn), where P is an n-ary predicate and t1, · · · , tn are terms

- t1 = t2, where t1 and t2 are terms (for languages with equality)

- ¬α, where α is a formula

- α→ β, where α, β are formulas

- ∀vnϕ where vn is a variable and ϕ is a formula
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Interpretations and valuations

An interpretation (structure) I for the predicate language L consists

of:

- a nonempty set U called the universe or the domain of I

(the set of values which the variables can take)

- for any constant symbol c, a value cI ∈ U

- for any n-ary function symbol f , a function f : Un→ U

- for any n-ary predicate symbol P , a subset PI ⊆ U
n.

Let I be an interpretation with universe U for L, and let V be the set

of all variable symbols from L. A valuation is a function s : V → U .

Extending the valuation s to terms and formulas we obtain a truth

function (valuation) for all formulas in L. We write I |= s(ϕ) or I |= ϕ[s]

if the valuation s evaluates formula ϕ to true in the interpretation I.

Define: I |= s(∀xϕ) if I |= sx←d(ϕ) for any d ∈ U , where

sx←d is the valuation sx←d(v) =

{

d if variable v is x
s(v) for any other variable v

Denote I |= ϕ (I is a model for ϕ) if I |= s(ϕ) for any valuation s.
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Axioms of predicate calculus

Define: variable x can be substituted with term t in ∀yϕ if:

- x does not appear free in ϕ or

- y does not appear in t and x can be substituted with t in ϕ

A1: (α→ (β → α))

A2: ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))

A3: (((¬β)→ (¬α))→ (((¬β)→ α)→ β))

A4: (∀x(α→ β)→ (∀xα→ ∀xβ))

A5: (∀xα→ α[x← t]), if x can be substituted with t in α

A6: (α→ ∀xα) if x does not appear free in α

For equality, we also add

A7: x = x

A8: x = y → α = β

where β is obtained from α by replacing arbitrarily many occurrences

of x with y.
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Soundness and completeness

Let H be a set of formulas and ϕ a formula. We say that H implies ϕ

(H |= ϕ) if for any interpretation I, I |= H implies I |= ϕ.

First-order predicate calculus is sound and complete

(like propositional logic).

For any hypothesis set H, and any formula ϕ, H ⊢ ϕ iff H |= ϕ.

Note: The notion of completeness above is different from the notion

of completeness which asks whether a set of axioms is sufficient for

deducing any formula or its negation.

The question whether H ⊢ ϕ is undecidable in general.
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Satisfiability. Applications

Problem: Determine whether a propositional formula is satisfiable.

Context: generally, complex formulas with hundreds or thousands of

variables.

The problem appears:

- in determining the equivalence of two circuits or models

- as basic step in theorem proving

- used instead of BDDs for symbolic model checking

Representation: conjunctive normal (canonical) form

efficient decision procedures based on the Davis-Putnam algorithm

Terminology: unit clause: composed of a single literal

pure literal: appears only positively (or only negated)
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Davis-Putnam Algorithm

function Satisfiable (listǎ de clauze S)

repeat

for each unit clause or pure literal L from S do

eliminate all clauses containing L

eliminate ¬ L from all clauses

if S is empty return TRUE

elsif S contains the empty clause return FALSE

until no more changes

choose a literal L from S for decomposition (true/false)

if Satisfiable (S ∪ {L}) return TRUE

elsif Satisfiable (S ∪ {¬L}) return TRUE

else return FALSE
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Theorem provers

Great variety:

- for proving results from mathematics

- for system verification (especially programs)

Generally, implemented for higher-order logics

- allow types described by means of predicates

- have inductive capabilities

Basic approaches to proving:

- forward chaining (derive theorems getting closer to the goal)

- or backwards chaining (generate intermediate conclusions for the

given goal)

- application of inference rules: controlled by tactics
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the resolution method. Clausal form

Any formula without free variables in predicate calculus can be written

in clausal form in a sequence of 8 steps

Example: start with

∀x[¬P(x)→ ∃y(D(x, y) ∧ ¬(E(f(x), y) ∨ E(x, y))] ∧ ¬∀xP(x)

(1) Eliminate all connectors except ∧, ∨, ¬:

∀x[¬¬P(x) ∨ ∃y(D(x, y) ∧ ¬(E(f(x), y) ∨ E(x, y)))] ∧ ¬∀xP(x)

(2) Translate all negation inwards until they reach predicates:

∀x[P(x) ∨ ∃y(D(x, y) ∧ ¬E(f(x), y) ∧ ¬E(x, y))] ∧ ∃x¬P(x)

(3) Rename variables, with unique name for each quantifier:

∀x[P(x) ∨ ∃y(D(x, y) ∧ ¬E(f(x), y) ∧ ¬E(x, y))] ∧ ∃z¬P(z)
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Transforming to clausal form (cont.)

(4) Eliminate existential quantifiers (skolemize)

For ∃y within a quantifier ∀x, create a Skolem function y = g(x)

(the value of y depends in general on the value of x).

Otherwise, choose a new Skolem constant.

∀x[P(x) ∨ (D(x, g(x)) ∧ ¬E(f(x), g(x)) ∧ ¬E(x, g(x)))] ∧ ¬P(a)

(5) Bring to prenex normal form (all ∀ quantifiers in front)

∀x([P(x) ∨ (D(x, g(x)) ∧ ¬E(f(x), g(x)) ∧ ¬E(x, g(x)))] ∧ ¬P(a))

(6) Eliminate prefix with universal quantifiers

[P(x) ∨ (D(x, g(x)) ∧ ¬E(f(x), g(x)) ∧ ¬E(x, g(x)))] ∧ ¬P(a)

(7) convert to conjunctive normal form

(P(x)∨D(x, g(x)))∧(P(x)∨¬E(f(x), g(x)))∧(P(x)∨¬E(x, g(x)))∧¬P(a)

(8) Eliminate ∧ and write disjunctions as separate clauses
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Resolution principle

Consider two clauses, written as sets of disjunctive terms.

Consider first the case of propositional formulas

Call resolvent of two clauses C1, C2 with respect to literal l

(for which l ∈ C1, (¬l) ∈ C2): rezl(C1, C2) = (C1 \ {l}) ∪ (C2 \ {¬l}).

Example: rezp({p, q, r}, {¬p, s}) = {q, r, s}.

(p ∨ q ∨ r) ∧ (¬p ∨ s)→ (q ∨ r ∨ s)

Proposition: C1, C2 |= rezl(C1, C2).

Corollary: C1 ∧ C2 is satisfiable iff rezl(C1, C2) is satisfiable.

We determine the satisfiability of a formula in conjunctive normal form

by repeatedly adding resolvents, and trying to derive the empty clause.
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Term unification

For predicate calculus, proceed likewise; but instead of a literal l and

its negation, ¬l consider the negation ¬l′ of a literal l′ that can be

unified with it.

Two literals can be unified if there is a term substitution for the oc-

curring variables that makes the literals identical.

Example: P(a, x, y) and P(z, f(z), b) can be unified to P(a, f(a), b).

To unify two literals: successively unify terms on same argument po-

sition (for functions and predicates) until the same literal is obtained,

or unification becomes impossible (symbols of different functions, or

unification of x with a term containing x).

Formal Verification. Lecture 6 Marius Minea


