Elements of Mathematical Logic

November 10, 2005
Propositional calculus

- Predicate calculus

Decision procedures
Resolution theorem proving

Formal Verification. Lecture 6

Syntax of propositional logic

Symbols of propositional logic: atomic propositions p, q, r, \cdots
logical connectors \neg and \rightarrow, and parantheses ().
Formulas of propositional logic:

- any atomic proposition is a formula
- if α is a formula, then $(\neg \alpha)$ is a formula
- if α and β are formulas, then $(\alpha \rightarrow \beta)$ is a formula.

Other known operators can be introduced as shorthands:
$-(\alpha \wedge \beta) \stackrel{\text { def }}{=}(\neg(\alpha \rightarrow(\neg \beta))$
$-(\alpha \vee \beta) \stackrel{\text { def }}{=}((\neg \alpha) \rightarrow \beta)$
$-(\alpha \leftrightarrow \beta) \stackrel{\text { def }}{=}((\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha))$
Simplified notation: without redundant parantheses;
precedence order defined as: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow ; \quad \rightarrow$ is right-associative
Formal Verification. Lecture a

Syntactic and semantic approach
Semantic approach: based on logical implication (logical truth)

$$
H \models \varphi
$$

A set of formulas H implies a formula φ if any truth function that satisfies H (i.e., all formulas in H) also satisfies φ.

Syntactic approach: logical proof

- based on syntactic manipulation of formulas:
is a theorem provable from a set of axioms, using deduction rules?

Axioms and deduction rules

Axion schemes for propositional logic:
A1: $(\alpha \rightarrow(\beta \rightarrow \alpha))$
A2: $((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)))$
A3: $(((\neg \beta) \rightarrow(\neg \alpha)) \rightarrow(((\neg \beta) \rightarrow \alpha) \rightarrow \beta))$
(called schemes (schemata) because axioms are obtained substituting particular formulas of propositional logic)
We introduce a single deduction rule (modus ponens, MP) From the formulas φ and $\varphi \rightarrow \psi$ we can deduce ψ.

Elements of Mathematical Logic

Deduction

Let H be a set of formulas. We call deduction from H a sequence of ormulas $A_{1}, A_{2}, \cdots, A_{n}$, such that.
. A_{i} is an axiom, or
2. A_{i} is a formula from H, or
. A_{i} follows by MP from two previous sequence items A_{j}, A_{k} where
$j<i, k<i$.
We say that A_{n} follows from H (is deducible, is a consequence): $H \vdash A_{n}$
Example: we prove that ($\varphi \rightarrow \varphi$)
(1) $\varphi \rightarrow((\varphi \rightarrow \varphi) \rightarrow \varphi))$
(2) $\varphi \rightarrow((\varphi \rightarrow \varphi) \rightarrow \varphi)) \rightarrow((\varphi \rightarrow(\varphi \rightarrow \varphi) \rightarrow(\varphi \rightarrow \varphi)) \quad$ A2
(3) $(\varphi \rightarrow(\varphi \rightarrow \varphi) \rightarrow(\varphi \rightarrow \varphi)$
(4) $\varphi \rightarrow(\varphi \rightarrow \varphi)$
(5) $\varphi \rightarrow \varphi$
Valuation functions (truth assignments)
values in $\{T, F\}$ such that:

- $v(p)$ is defined for any atomic proposition p.
$-v(\neg \alpha)= \begin{cases}\mathrm{T} & \text { if } v(\alpha)=\mathrm{F} \\ \mathrm{F} & \text { if } v(\alpha)=\mathrm{T}\end{cases}$
$-v(\alpha \rightarrow \beta)= \begin{cases}\mathrm{F} & \text { if } v(\alpha)=\mathrm{T} \text { și } v(\beta)=\mathrm{F} \\ \mathrm{T} & \text { otherwise }\end{cases}$
An interpretation $=$ a valuation for the atomic propositions of a formula
An intrepretation satisfies a formula if the latter is evaluated to T
we say that the interpretation is a model for that formula)
valid formula (tautology): true in all interpretations satisfiable formula: true in at least one interpretation unsatisfiable formula (contradiction): false in any interpretation

Formal Verification. Lecture 6

Elements of Mathematical Logic

Soundness and Completeness
establish the correspondence between the syntactic approach, based on deduction, and the semantic approach, based on truth values. Soundness: If H is a set of formulas, and α is a formula such tha $H \vdash \alpha$, then $H \models \alpha$.
(Any thorem in propositional logic is a tautology)
Completeness: If H is a set of formulas, and α is a formula such that $H \models \alpha$, then $H \vdash \alpha$. (Any tautology is a theorem).
Proof: based on the following notions and auxiliary results:
A set of formulas H is inconsistent if there is a formula α such that $H \vdash \alpha$ and $H \vdash \neg \alpha$.
Any consistent set of formulas can be extended to a maximally consistent set (adding any other formula makes it inconsistent)
A set of formulas is consistent if and only if it is satisfiable.
Formal Verification. Lecture

First-order terms and formulas

Terms of a first-order language (defined by structural induction)
any variable symbol v_{n}

- any constant symbol c
$f\left(t_{1}, \cdots, t_{n}\right)$, if f is an n-ary function symbol and t_{1}, \cdots, t_{n} are terms
(Well-formed) Formulas of a first-order language
$P\left(t_{1}, \cdots, t_{n}\right)$, where P is an n-ary predicate and t_{1}, \cdots, t_{n} are terms
$t_{1}=t_{2}$, where t_{1} and t_{2} are terms (for languages with equality)
$\neg \alpha$, where α is a formula
$\alpha \rightarrow \beta$, where α, β are formulas
$\forall v_{n} \varphi$ where v_{n} is a variable and φ is a formula

Elements of Mathematical Looic icpretations and valuations
An interpretation (structure) I for the predicate language \mathcal{L} consists of:

- a nonempty set U called the universe or the domain of I
(the set of values which the variables can take)
- for any constant symbol c, a value $c_{I} \in U$
for any n-ary function symbol f, a function $f: U^{n} \rightarrow U$
- for any n-ary predicate symbol P, a subset $P_{I} \subseteq U^{n}$

Let I be an interpretation with universe U for \mathcal{L}, and let V be the set of all variable symbols from \mathcal{L}. A valuation is a function $s: V \rightarrow U$. Extending the valuation s to terms and formulas we obtain a truth function (valuation) for all formulas in \mathcal{L}. We write $I \models s(\varphi)$ or $I \models \varphi[s]$ if the valuation s evaluates formula φ to true in the interpretation I.
Define: $I \models s(\forall x \varphi)$ if $I \models s_{x \leftarrow d}(\varphi)$ for any $d \in U$, where
$s_{x \leftarrow d}$ is the valuation $s_{x \leftarrow d}(v)= \begin{cases}d & \text { if variable } v \text { is } x \\ \mathrm{~s}(\mathrm{v}) & \text { for any other variable } v\end{cases}$
Denote $I \models \varphi$ (I is a model for φ) if $I \models s(\varphi)$ for any valuation s. Formal Verification. Lecture 6

First-order languages

First-order lang

- parantheses ()
- logical connectors \neg and \rightarrow
- the quantifier \forall (universal quantifier)
a set of identifiers v_{0}, v_{1}, \ldots for variables
- a (possibly empty) set of symbols for constant
- for any $n \geq 1$ a set of n-ary function symbols (of n arguments)
for any $n \geq 1$ a set of n-ary predicates (relations)

First-order languages with equality: contain $=$ as special symbol in addition to the above.
Formal Verification. Lecture 6 Marius Minea

Axioms of predicate calculus
Define: variable x can be substituted with term t in $\forall y \varphi$ if:
x does not appear free in φ or
y does not appear in t and x can be substituted with t in φ
A1: $(\alpha \rightarrow(\beta \rightarrow \alpha))$
A2: $((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)))$
A3: $(((\neg \beta) \rightarrow(\neg \alpha)) \rightarrow(((\neg \beta) \rightarrow \alpha) \rightarrow \beta))$
A4: $(\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \forall x \beta))$
A5: $(\forall x \alpha \rightarrow \alpha[x \leftarrow t])$, if x can be substituted with t in α
A6: $(\alpha \rightarrow \forall x \alpha)$ if x does not appear free in α
For equality, we also add
A7: $x=x$
A8: $x=y \rightarrow \alpha=\beta$
where β is obtained from α by replacing arbitrarily many occurrences of x with y.

Formal Verification. Lecture 6

Soundness and completeness
Let H be a set of formulas and φ a formula. We say that H implies φ $(H \models \varphi)$ if for any interpretation $I, I \models H$ implies $I \models \varphi$.

First-order predicate calculus is sound and complete
(like propositional logic).
For any hypothesis set H, and any formula $\varphi, H \vdash \varphi$ iff $H \models \varphi$.
Note: The notion of completeness above is different from the notion of completeness which asks whether a set of axioms is sufficient for deducing any formula or its negation.

The question whether $H \vdash \varphi$ is undecidable in general.

Theorem provers

Great variety:

- for proving results from mathematics
for system verification (especially programs)
Generally, implemented for higher-order logics
allow types described by means of predicate
have inductive capabilities
Basic approaches to proving:
forward chaining (derive theorems getting closer to the goal)
or backwards chaining (generate intermediate conclusions for the given goal)
application of inference rules: controlled by tactics
\qquad

Problem: Determine whether a propositional formula is satisfiable.
Context: generally, complex formulas with hundreds or thousands of variables.
The problem appears:

- in determining the equivalence of two circuits or models
as basic step in theorem proving
- used instead of BDDs for symbolic model checking

Representation: conjunctive normal (canonical) form
efficient decision procedures based on the Davis-Putnam algorithm Terminology: unit clause: composed of a single literal pure literal: appears only positively (or only negated)

Formal Verification. Lecture
the resolution method. Clausal form
Any formula without free variables in predicate calculus can be written in clausal form in a sequence of 8 steps
Example: start with
$\forall x[\neg P(x) \rightarrow \exists y(D(x, y) \wedge \neg(E(f(x), y) \vee E(x, y))] \wedge \neg \forall x P(x)$
(1) Eliminate all connectors except \wedge, \vee, \neg :
$\forall x[\neg \neg P(x) \vee \exists y(D(x, y) \wedge \neg(E(f(x), y) \vee E(x, y)))] \wedge \neg \forall x P(x)$
(2) Translate all negation inwards until they reach predicates:
$\forall x[P(x) \vee \exists y(D(x, y) \wedge \neg E(f(x), y) \wedge \neg E(x, y))] \wedge \exists x \neg P(x)$
(3) Rename variables, with unique name for each quantifier:
$\forall x[P(x) \vee \exists y(D(x, y) \wedge \neg E(f(x), y) \wedge \neg E(x, y))] \wedge \exists z \neg P(z)$

Davis-Putnam Algorithm
function Satisfiable (listă de clauze S)

repeat

for each unit clause or pure literal L from S do eliminate all clauses containing L
eliminate $\neg \mathrm{L}$ from all clauses
if S is empty return TRUE
elsif S contains the empty clause return FALSE
until no more changes
choose a literal L from S for decomposition (true/false)
if Satisfiable ($\mathrm{S} \cup\{\mathrm{L}\}$) return TRUE
elsif Satisfiable ($S \cup\{\neg L\}$) return TRUE
else return FALSE

Formal Verficication. Lecture 6

Elements of Mathematical Logic
(4) Eliminate existential quantifiers (skolemize)

For $\exists y$ within a quantifier $\forall x$, create a Skolem function $y=g(x)$
(the value of y depends in general on the value of x).
Otherwise, choose a new Skolem constant
$\forall x[P(x) \vee(D(x, g(x)) \wedge \neg E(f(x), g(x)) \wedge \neg E(x, g(x)))] \wedge \neg P(a)$
(5) Bring to prenex normal form (all \forall quantifiers in front)
$x([P(x) \vee(D(x, g(x)) \wedge \neg E(f(x), g(x)) \wedge \neg E(x, g(x)))] \wedge \neg P(a))$
6) Eliminate prefix with universal quantifiers
$[P(x) \vee(D(x, g(x)) \wedge \neg E(f(x), g(x)) \wedge \neg E(x, g(x)))] \wedge \neg P(a)$
(7) convert to conjunctive normal form
$(P(x) \vee D(x, g(x))) \wedge(P(x) \vee \neg E(f(x), g(x))) \wedge(P(x) \vee \neg E(x, g(x))) \wedge \neg P(a)$
(8) Eliminate \wedge and write disjunctions as separate clauses

Resolution principle

Consider two clauses, written as sets of disjunctive terms. Consider first the case of propositional formulas
Call resolvent of two clauses C_{1}, C_{2} with respect to literal l
(for which $\left.l \in C_{1},(\neg l) \in C_{2}\right)$: $\operatorname{rez}_{l}\left(C_{1}, C_{2}\right)=\left(C_{1} \backslash\{l\}\right) \cup\left(C_{2} \backslash\{\neg l\}\right)$ Example: $\operatorname{rez}_{p}(\{p, q, r\},\{\neg p, s\})=\{q, r, s\}$
$p \vee q \vee r) \wedge(\neg p \vee s) \rightarrow(q \vee r \vee s)$
Proposition: $C_{1}, C_{2} \models r e z_{l}\left(C_{1}, C_{2}\right)$
Corollary: $C_{1} \wedge C_{2}$ is satisfiable iff rezl $\left(C_{1}, C_{2}\right)$ is satisfiable.
We determine the satisfiability of a formula in conjunctive normal form by repeatedly adding resolvents, and trying to derive the empty clause.

Term unification

For predicate calculus, proceed likewise; but instead of a literal l and its negation, $\neg l$ consider the negation $\neg l^{\prime}$ of a literal l^{\prime} that can be unified with it.
Two literals can be unified if there is a term substitution for the oc curring variables that makes the literals identical.

Example: $P(a, x, y)$ and $P(z, f(z), b)$ can be unified to $P(a, f(a), b)$.
To unify two literals: successively unify terms on same argument po sition (for functions and predicates) until the same literal is obtained or unification becomes impossible (symbols of different functions, or unification of x with a term containing x).

