
Elements of Mathematical Logic

November 10, 2005

- Propositional calculus

- Predicate calculus

- Decision procedures

- Resolution theorem proving

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 2

Syntax of propositional logic

Symbols of propositional logic: atomic propositions p, q, r, · · ·,

logical connectors ¬ and →, and parantheses ().

Formulas of propositional logic:

– any atomic proposition is a formula

– if α is a formula, then (¬α) is a formula.

– if α and β are formulas, then (α→ β) is a formula.

Other known operators can be introduced as shorthands:

– (α ∧ β)
def
= (¬(α→ (¬β)))

– (α ∨ β)
def
= ((¬α)→ β)

– (α↔ β)
def
= ((α→ β) ∧ (β → α))

Simplified notation: without redundant parantheses;

precedence order defined as: ¬,∧,∨,→,↔; → is right-associative

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 3

Valuation functions (truth assignments)

A valuation v is a function defined for all propositional formulas, with

values in {T,F} such that:

– v(p) is defined for any atomic proposition p.

– v(¬α) =

{

T if v(α) = F
F if v(α) = T

– v(α→ β) =

{

F if v(α) = Tşi v(β) = F
T otherwise

An interpretation = a valuation for the atomic propositions of a formula

An intrepretation satisfies a formula if the latter is evaluated to T

(we say that the interpretation is a model for that formula).

valid formula (tautology): true in all interpretations

satisfiable formula: true in at least one interpretation

unsatisfiable formula (contradiction): false in any interpretation

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 4

Syntactic and semantic approach

Semantic approach: based on logical implication (logical truth)

H |= ϕ

A set of formulas H implies a formula ϕ if any truth function that

satisfies H (i.e., all formulas in H) also satisfies ϕ.

Syntactic approach: logical proof

– based on syntactic manipulation of formulas:

Is a theorem provable from a set of axioms, using deduction rules ?

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 5

Axioms and deduction rules

Axion schemes for propositional logic:

A1: (α→ (β → α))

A2: ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))

A3: (((¬β)→ (¬α))→ (((¬β)→ α)→ β))

(called schemes (schemata) because axioms are obtained substituting

particular formulas of propositional logic)

We introduce a single deduction rule (modus ponens, MP):

From the formulas ϕ and ϕ→ ψ we can deduce ψ.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 6

Deduction

Let H be a set of formulas. We call deduction from H a sequence of

formulas A1, A2, · · · , An, such that:

1. Ai is an axiom, or

2. Ai is a formula from H, or

3. Ai follows by MP from two previous sequence items Aj, Ak where

j < i, k < i.

We say that An follows from H (is deducible, is a consequence): H ⊢ An

Example: we prove that (ϕ→ ϕ)

(1) ϕ→ ((ϕ→ ϕ)→ ϕ)) A1

(2) ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((ϕ→ (ϕ→ ϕ)→ (ϕ→ ϕ)) A2

(3) (ϕ→ (ϕ→ ϕ)→ (ϕ→ ϕ) MP(1,2)

(4) ϕ→ (ϕ→ ϕ) A1

(5) ϕ→ ϕ MP(3,4)

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 7

Deduction theorem

Let H be a set of formulas and α, β two formulas.

Then H ⊢ α→ β if and only if H ∪ {α} ⊢ β.

- used as additional inference rule to simplify proofs

Other corollaries:

- if H ⊢ α and H ⊢ α→ β, then H ⊢ β

- if G ⊆ H and G ⊢ α, then H ⊢ α

- if H ⊢ G and G ⊢ α, then H ⊢ α

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 8

Soundness and Completeness

establish the correspondence between the syntactic approach, based

on deduction, and the semantic approach, based on truth values.

Soundness: If H is a set of formulas, and α is a formula such that

H ⊢ α, then H |= α.

(Any thorem in propositional logic is a tautology)

Completeness: If H is a set of formulas, and α is a formula such that

H |= α, then H ⊢ α. (Any tautology is a theorem).

Proof: based on the following notions and auxiliary results:

A set of formulas H is inconsistent if there is a formula α such that

H ⊢ α and H ⊢ ¬α.

Any consistent set of formulas can be extended to a maximally con-

sistent set (adding any other formula makes it inconsistent)

A set of formulas is consistent if and only if it is satisfiable.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 9

First-order languages

The symbols of a first-order language are:

- parantheses ()

- logical connectors ¬ and →

- the quantifier ∀ (universal quantifier)

- a set of identifiers v0, v1, · · · for variables

- a (possibly empty) set of symbols for constants

- for any n ≥ 1 a set of n-ary function symbols (of n arguments)

- for any n ≥ 1 a set of n-ary predicates (relations)

First-order languages with equality: contain = as special symbol in

addition to the above.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 10

First-order terms and formulas

Terms of a first-order language (defined by structural induction)

- any variable symbol vn

- any constant symbol c

- f(t1, · · · , tn), if f is an n-ary function symbol and t1, · · · , tn are terms

(Well-formed) Formulas of a first-order language:

- P(t1, · · · , tn), where P is an n-ary predicate and t1, · · · , tn are terms

- t1 = t2, where t1 and t2 are terms (for languages with equality)

- ¬α, where α is a formula

- α→ β, where α, β are formulas

- ∀vnϕ where vn is a variable and ϕ is a formula

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 11
Interpretations and valuations

An interpretation (structure) I for the predicate language L consists

of:

- a nonempty set U called the universe or the domain of I

(the set of values which the variables can take)

- for any constant symbol c, a value cI ∈ U

- for any n-ary function symbol f , a function f : Un→ U

- for any n-ary predicate symbol P , a subset PI ⊆ U
n.

Let I be an interpretation with universe U for L, and let V be the set

of all variable symbols from L. A valuation is a function s : V → U .

Extending the valuation s to terms and formulas we obtain a truth

function (valuation) for all formulas in L. We write I |= s(ϕ) or I |= ϕ[s]

if the valuation s evaluates formula ϕ to true in the interpretation I.

Define: I |= s(∀xϕ) if I |= sx←d(ϕ) for any d ∈ U , where

sx←d is the valuation sx←d(v) =

{

d if variable v is x
s(v) for any other variable v

Denote I |= ϕ (I is a model for ϕ) if I |= s(ϕ) for any valuation s.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 12

Axioms of predicate calculus

Define: variable x can be substituted with term t in ∀yϕ if:

- x does not appear free in ϕ or

- y does not appear in t and x can be substituted with t in ϕ

A1: (α→ (β → α))

A2: ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))

A3: (((¬β)→ (¬α))→ (((¬β)→ α)→ β))

A4: (∀x(α→ β)→ (∀xα→ ∀xβ))

A5: (∀xα→ α[x← t]), if x can be substituted with t in α

A6: (α→ ∀xα) if x does not appear free in α

For equality, we also add

A7: x = x

A8: x = y → α = β

where β is obtained from α by replacing arbitrarily many occurrences

of x with y.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 13

Soundness and completeness

Let H be a set of formulas and ϕ a formula. We say that H implies ϕ

(H |= ϕ) if for any interpretation I, I |= H implies I |= ϕ.

First-order predicate calculus is sound and complete

(like propositional logic).

For any hypothesis set H, and any formula ϕ, H ⊢ ϕ iff H |= ϕ.

Note: The notion of completeness above is different from the notion

of completeness which asks whether a set of axioms is sufficient for

deducing any formula or its negation.

The question whether H ⊢ ϕ is undecidable in general.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 14

Satisfiability. Applications

Problem: Determine whether a propositional formula is satisfiable.

Context: generally, complex formulas with hundreds or thousands of

variables.

The problem appears:

- in determining the equivalence of two circuits or models

- as basic step in theorem proving

- used instead of BDDs for symbolic model checking

Representation: conjunctive normal (canonical) form

efficient decision procedures based on the Davis-Putnam algorithm

Terminology: unit clause: composed of a single literal

pure literal: appears only positively (or only negated)

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 15

Davis-Putnam Algorithm

function Satisfiable (listǎ de clauze S)

repeat

for each unit clause or pure literal L from S do

eliminate all clauses containing L

eliminate ¬ L from all clauses

if S is empty return TRUE

elsif S contains the empty clause return FALSE

until no more changes

choose a literal L from S for decomposition (true/false)

if Satisfiable (S ∪ {L}) return TRUE

elsif Satisfiable (S ∪ {¬L}) return TRUE

else return FALSE

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 16

Theorem provers

Great variety:

- for proving results from mathematics

- for system verification (especially programs)

Generally, implemented for higher-order logics

- allow types described by means of predicates

- have inductive capabilities

Basic approaches to proving:

- forward chaining (derive theorems getting closer to the goal)

- or backwards chaining (generate intermediate conclusions for the

given goal)

- application of inference rules: controlled by tactics

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 17

the resolution method. Clausal form

Any formula without free variables in predicate calculus can be written

in clausal form in a sequence of 8 steps

Example: start with

∀x[¬P(x)→ ∃y(D(x, y) ∧ ¬(E(f(x), y) ∨ E(x, y))] ∧ ¬∀xP(x)

(1) Eliminate all connectors except ∧, ∨, ¬:

∀x[¬¬P(x) ∨ ∃y(D(x, y) ∧ ¬(E(f(x), y) ∨ E(x, y)))] ∧ ¬∀xP(x)

(2) Translate all negation inwards until they reach predicates:

∀x[P(x) ∨ ∃y(D(x, y) ∧ ¬E(f(x), y) ∧ ¬E(x, y))] ∧ ∃x¬P(x)

(3) Rename variables, with unique name for each quantifier:

∀x[P(x) ∨ ∃y(D(x, y) ∧ ¬E(f(x), y) ∧ ¬E(x, y))] ∧ ∃z¬P(z)

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 18

Transforming to clausal form (cont.)

(4) Eliminate existential quantifiers (skolemize)

For ∃y within a quantifier ∀x, create a Skolem function y = g(x)

(the value of y depends in general on the value of x).

Otherwise, choose a new Skolem constant.

∀x[P(x) ∨ (D(x, g(x)) ∧ ¬E(f(x), g(x)) ∧ ¬E(x, g(x)))] ∧ ¬P(a)

(5) Bring to prenex normal form (all ∀ quantifiers in front)

∀x([P(x) ∨ (D(x, g(x)) ∧ ¬E(f(x), g(x)) ∧ ¬E(x, g(x)))] ∧ ¬P(a))

(6) Eliminate prefix with universal quantifiers

[P(x) ∨ (D(x, g(x)) ∧ ¬E(f(x), g(x)) ∧ ¬E(x, g(x)))] ∧ ¬P(a)

(7) convert to conjunctive normal form

(P(x)∨D(x, g(x)))∧(P(x)∨¬E(f(x), g(x)))∧(P(x)∨¬E(x, g(x)))∧¬P(a)

(8) Eliminate ∧ and write disjunctions as separate clauses

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 19

Resolution principle

Consider two clauses, written as sets of disjunctive terms.

Consider first the case of propositional formulas

Call resolvent of two clauses C1, C2 with respect to literal l

(for which l ∈ C1, (¬l) ∈ C2): rezl(C1, C2) = (C1 \ {l}) ∪ (C2 \ {¬l}).

Example: rezp({p, q, r}, {¬p, s}) = {q, r, s}.

(p ∨ q ∨ r) ∧ (¬p ∨ s)→ (q ∨ r ∨ s)

Proposition: C1, C2 |= rezl(C1, C2).

Corollary: C1 ∧ C2 is satisfiable iff rezl(C1, C2) is satisfiable.

We determine the satisfiability of a formula in conjunctive normal form

by repeatedly adding resolvents, and trying to derive the empty clause.

Formal Verification. Lecture 6 Marius Minea

Elements of Mathematical Logic 20

Term unification

For predicate calculus, proceed likewise; but instead of a literal l and

its negation, ¬l consider the negation ¬l′ of a literal l′ that can be

unified with it.

Two literals can be unified if there is a term substitution for the oc-

curring variables that makes the literals identical.

Example: P(a, x, y) and P(z, f(z), b) can be unified to P(a, f(a), b).

To unify two literals: successively unify terms on same argument po-

sition (for functions and predicates) until the same literal is obtained,

or unification becomes impossible (symbols of different functions, or

unification of x with a term containing x).

Formal Verification. Lecture 6 Marius Minea

