Comparing models. Abstraction. Compositional reasonins

28 octombrie 2003

Problem setting

Specification formulas can be converted to automata
(LTL tableau construction)

- represent "simplest" system that conforms to the specification

When using an automaton as specification:

- what does it mean to say "system functions like this automaton"

How does one build (abstract) a simpler model from a complex one ? Does verifying a simpler model ensure correctness of the initial one ?

Can one deduce correctness of a composite model from proving properties of the components ?

Language inclusion (trace inclusion)

Consider a Kripke structure M with a set $A P$ of atomic propositions

Language of $M=$ set of execution traces seen as sequences of labels Formally: $\mathcal{L}(M)=$ set of infinite words (strings) $\alpha_{0} \alpha_{1} \alpha_{2} \ldots$
such that there exists a path $s_{0} s_{1} s_{2} \ldots$ of M with $L\left(s_{i}\right)=\alpha_{i}$.
Language inclusion preserves LTL properties:

$$
\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{S}) \Leftrightarrow \forall \mathbf{A} f \in L T L . \mathcal{S}=\mathbf{A} f \Rightarrow \mathcal{M} \equiv \mathbf{A} f
$$

Simulation relation

Consider two structures M and M^{\prime}, with $A P \supseteq A P^{\prime}$. A relation $\preceq \subseteq S \times S^{\prime}$ is a simulation relation between M and M^{\prime} iff $\forall s \preceq s^{\prime}$:

- $L(s) \cap A P^{\prime}=L^{\prime}\left(s^{\prime}\right)$ (s and s^{\prime} labeled identically with respect to $A P^{\prime}$)
- $\forall s_{1}$ with $s \rightarrow s_{1}$ there exists s_{1}^{\prime} with $s^{\prime} \rightarrow s_{1}^{\prime}$ and $s_{1} \preceq s_{1}^{\prime}$ (any successor of s is simulated by a successor of s^{\prime})

The structure M^{\prime} simulates $M\left(M \preceq M^{\prime}\right)$ of there exists a simulation relation \preceq such that for the initial states: $\forall s_{0} \in S_{0} \exists s_{0}^{\prime} \in S_{0}^{\prime} . s_{0} \preceq s_{0}^{\prime}$

Prop.: The simulation relation is a preorder over the set of structures (reflexive and transitive). We choose: $s \preceq s^{\prime \prime} \Leftrightarrow \exists s^{\prime} . s \preceq_{1} s^{\prime} \wedge s^{\prime} \preceq_{2} s^{\prime \prime}$

Theorem: If $M \preceq M^{\prime}$, then $M^{\prime} \vDash f \Rightarrow M \vDash f$, for any ACTL* formula f over $A P^{\prime}$.

Let M and M^{\prime} be two structures with $A P^{\prime}=A P$. A relation $\simeq \subseteq S \times S^{\prime}$ is a bisimulation relation between M and M^{\prime} iff $\forall s, s^{\prime}$ with $s \simeq s^{\prime}$:
$-\mathrm{L}(\mathrm{s})=\mathrm{L}\left(\mathrm{s}^{\prime}\right)$
$-\forall s_{1}$ with $s \rightarrow s_{1}$ there exists s_{1}^{\prime} with $s^{\prime} \rightarrow s_{1}^{\prime}$ and $s_{1} \simeq s_{1}^{\prime}$
$-\forall s_{1}^{\prime}$ with $s^{\prime} \rightarrow s_{1}^{\prime}$ there exists s_{1} with $s \rightarrow s_{1}$ and $s_{1} \simeq s_{1}^{\prime}$
(or: \simeq a symmetric simulation relation between M and M^{\prime} and between M^{\prime} and M)

Structures M and M^{\prime} are bisimilar if there exists a bisimulation relation \simeq such that for initial states: $\forall s_{0} \in S_{0} \exists s_{0}^{\prime} \in S_{0}^{\prime} . s_{0} \simeq s_{0}^{\prime}$, and $\forall s_{0}^{\prime} \in S_{0}^{\prime} \exists s_{0} \in S_{0} \cdot s_{0} \simeq s_{0}^{\prime}$.
Prop.: The bisimulation relation is an equivalence relation among structures

Theorem: If $M \simeq M^{\prime}$ then $\forall f \in C T L *, M \models f \Leftrightarrow M^{\prime} \models f$.
Conversely: Two structures that satisfy the same CTL* (or even CTL) formulas are bisimilar (equivalently: two structures which are not bisimilar can be distinguished by a CTL formula).

Example: language inclusion and simulation

Generally: $\left.M \preceq M^{\prime} \Rightarrow \mathcal{L}(M)\right|_{A P^{\prime}} \subseteq \mathcal{L}\left(M^{\prime}\right)$
In the figure: $\mathcal{L}\left(M_{1}\right)=\mathcal{L}\left(M_{2}\right), M_{1} \preceq M_{2}, M_{2} \npreceq M_{1}$
Equivalent definition (game theory): $M \preceq M^{\prime}$ if any move in M can be matchd by an equally labelled move in M^{\prime}.

Example: simulation and bisimulation

Generally: $M \simeq M^{\prime} \Rightarrow M \preceq M^{\prime} \wedge M^{\prime} \preceq M$
In the figure: $M_{1} \preceq M_{2}, M_{2} \preceq M_{1}$ but $M_{1} \nsucceq M_{2}$
Equivalent definition (as a game): $M \simeq M^{\prime}$ if any choice of a model and of a move in it can be matched by an equally labelled move in the other model.
(choice of model done at each step \Rightarrow symmetry)

Example: bisimulation

$M_{1} \simeq M_{2}$
(duplicating nodes does not change branching properties)

Extension to fairness

The relation $\preceq_{F} \subseteq S \times S^{\prime}$ is a fair simulation relation between M and M^{\prime} (with $A P^{\prime} \subseteq A P$) iff $\forall s \preceq_{F} s^{\prime}$:
$-L(s) \cap A P^{\prime}=L^{\prime}\left(s^{\prime}\right)$

- for any fair path $\pi=s s_{1} s_{2} \ldots$ in M there exists a fair path $\pi^{\prime}=s^{\prime} s_{1}^{\prime} s_{2}^{\prime} \ldots$ in M^{\prime} such that $\forall i>0 . s_{i} \preceq s_{i}^{\prime}$.
If $M \preceq_{F} M^{\prime}$, then $\forall f \in A C T L *, M^{\prime} \models_{F} f \Rightarrow M=_{F} f$
The relation $\simeq_{F} \subseteq S \times S^{\prime}$ is an fair bisimulation relation echitabilă between M and $M^{\prime}\left(\right.$ with $\left.A P^{\prime}=A P\right)$ iff $\forall s \simeq_{F} s^{\prime}$:
$-\mathrm{L}(\mathrm{s})=\mathrm{L}\left(\mathrm{s}^{\prime}\right)$
- for any fair path $\pi=s s_{1} s_{2} \ldots$ in M there exists a fair path
$\pi^{\prime}=s^{\prime} s_{1}^{\prime} s_{2}^{\prime} \ldots$ in M^{\prime} such that $\forall i>0 . s_{i} \simeq s_{i}^{\prime}$.
- for any fair $\pi^{\prime}=s^{\prime} s_{1}^{\prime} s_{2}^{\prime} \ldots$ in M^{\prime} there exists
a fair path $\pi=s s_{1} s_{2} \ldots$ in M such that $\forall i>0 . s_{i} \simeq s_{i}^{\prime}$.
If $M \simeq_{F} M^{\prime}$, then $\forall f \in C T L *, M^{\prime} \models_{F} f \Leftrightarrow M \models_{F} f$

Algorithms for checking bisimulation

Deterministic system $=$ single initial state; any two successors differently labeled $s \rightarrow s_{1} \wedge s \rightarrow s_{2} \wedge s_{1} \neq s_{2} \Rightarrow L\left(s_{1}\right) \neq L\left(s_{2}\right)$

Simulation:
M, M^{\prime} deterministic: $M \preceq M^{\prime} \Leftrightarrow \mathcal{L}(M) \subseteq \mathcal{L}\left(M^{\prime}\right)$
In general, we recursively define: $s \preceq_{0} s^{\prime} \Leftrightarrow L(s) \cap A P^{\prime}=L\left(s^{\prime}\right)$
$s \preceq_{n+1} s^{\prime} \Leftrightarrow s \preceq_{n} s^{\prime} \wedge \forall s_{1} . s \rightarrow s_{1} \Rightarrow \exists s_{1}^{\prime} . s^{\prime} \rightarrow s_{1}^{\prime} \wedge s_{1} \preceq_{n} s_{1}^{\prime}$
We have $\preceq_{i+1} \subseteq \preceq_{i} \Rightarrow \exists n . \preceq_{n}=\preceq_{n+1}=\preceq$ (finite models)
Bisimulation:
M, M^{\prime} deterministic: $M \simeq M^{\prime} \Leftrightarrow \mathcal{L}(M)=\mathcal{L}\left(M^{\prime}\right)$
In general, we recursively define: $s \simeq_{0} s^{\prime} \Leftrightarrow L(s)=L\left(s^{\prime}\right)$
$s \simeq_{n+1} s^{\prime} \Leftrightarrow s \simeq_{n} s^{\prime} \wedge \forall s_{1}\left[s \rightarrow s_{1} \Rightarrow \exists s_{1}^{\prime} \cdot s^{\prime} \rightarrow s_{1}^{\prime} \wedge s_{1} \simeq_{n} s_{1}^{\prime}\right]$

$$
\wedge \forall s_{1}^{\prime}\left[s^{\prime} \rightarrow s_{1}^{\prime} \Rightarrow \exists s_{1} \cdot s \rightarrow s_{1} \wedge s_{1} \simeq_{n} s_{1}^{\prime}\right]
$$

We have $\simeq_{i+1} \subseteq \simeq_{i} \Rightarrow \exists n . \simeq_{n}=\simeq_{n+1}=\simeq$ (finite models)

Abstraction is the key step in verifying systems of realistic size.

- it means constructing an abstract system (with fewer details)
- and establishing a correspondence between the abstract and the original system
- exact abstractions: preserve truth value
- conservative abstractions (approximations): correctness of abstract system implies correctness of real system, but not conversely (counterexample in the abstract system may not exist in the real one)

The abstract model must be obtained without building the concrete one
(the latter is often impossible due to size)

- syntactic abstraction techniques
- semantic abstraction techniques (e.g. reduced domain for variables)

Examples of encountered abstractions

Timed abstractions (region automaton; zone graph)

- are finite abstractions of an infinite-state systems
- several states in the concrete system match a state in the abstract system

A specification is usually an abstraction of the implementation

- the tableau for the LTL formula is an abstraction for a system that satisfies it

Refinement relations (language inclusion, simulation, etc.) between two different systems.

Using 1-bit packets in the protocol model of project 1 (data abstraction)

Cone of influence reduction

Abstraction by removal of variables that do not affect specification.

Let M be a system with variable set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ described by the equations $v_{i}^{\prime}=f_{i}(V)$.
Let V^{\prime} be the set of variables referenced in the specification.
The cone of influence of $V^{\prime}=$ minimal set $C \subseteq V$ such that
$-V^{\prime} \subseteq C$

- if $v_{i} \in C$, and f_{i} depends on v_{j}, then $v_{j} \in C$ (transitive closure)

We build a new system M^{\prime} eliminating all the variables that do not appear in C, together with their functional equations.

We prove that cone of influence reduction preserves the truth values of CTL* specifications (defined over variables from C).

Let $V=\left\{v_{1}, v_{2}, \cdots v_{n}\right\}$ be a set of boolean variables.
and $M=\left(S, S_{0}, R, L\right)$, with:
$-S=\{0,1\}^{n}=$ set of assignments to V; $S_{0} \subseteq S$
$-R=\wedge_{i=1}^{n}\left(v_{i}^{\prime}=f_{i}(V)\right)$
$-L(s)=\left\{v_{i} \mid s\left(v_{i}\right)=1\right\}$ (variables equal to 1 in s)
Let V be numbered such that $C=\left\{v_{1}, \cdots, v_{k}\right\}$. We define $M^{\prime}=$ $\left(S^{\prime}, S_{0}^{\prime}, R^{\prime}, L^{\prime}\right)$:

- $S^{\prime}=\{0,1\}^{k}=$ set of assignments to C
$-S_{0}=\left\{\left(d_{1}^{\prime}, \cdots, d_{k}^{\prime}\right) \mid \exists\left(d_{1}, \cdots d_{n}\right) \in S_{0}\right.$ cu $\left.d_{1}^{\prime}=d_{1} \wedge \ldots \wedge d_{k}^{\prime}=d_{k}\right\}$
$-R^{\prime}=\bigwedge_{i=1}^{k}\left(v_{i}^{\prime}=f_{i}(C)\right)$
$-L^{\prime}(s)=\left\{v_{i} \mid s^{\prime}\left(v_{i}\right)=1\right\}$
We can show that the concrete model M and the abstract model M^{\prime} are bisimilar.

Program slicing

A similar but more general notion for programs [Weiser'79]

- inspired by the mental processes performed during debugging
$=$ calculating the program fragment that can affect the computed values in a given point of interest (slicing criterion) (e.g. variable at source line)
- usually: an executable program fragment, in source language
- based on program analysis notions of control and data dependence

Types of slicing:

- static or dinamic
- syntactic or semantic criteria
- forward or backward traversal of control graph
- type of control graph dependence: forward/backward; direct/transitive
- on all or some paths through control graph

Data abstraction

- used for reasoning about circuits with large bit width, or about programs with complex data structures
- useful if data processing operations are relatively simple (transfer, small number of arithmetic / logic ops)

Main idea: establishing a correspondence between original domain of data and a smaller-size domain (usually a few values)

Example: sign abstraction
$h(x)= \begin{cases}- & \text { if } x<0 \\ 0 & \text { if } x=0 \\ + & \text { if } x>0\end{cases}$

\cdot	-	0	+
-	+	0	-
0	0	0	0
+	-	0	+

+	-	0	+
-	-	-	\top
0	-	0	+
+	\top	+	+
where \top	$=\{-, 0,+\}$		

\Rightarrow we can not always have a precise abstraction
\Rightarrow abstraction domain and function must be carefully chosen

- for any variable x, we define an abstract variable \widehat{x}
- we label states with atomic propositions indicating the abstract value (for sign abstraction: 3 propositions $p_{x}^{-}, p_{x}^{0}, p_{x}^{+}$for each variable x, indicating $\widehat{x}="-", \hat{x}=0, \hat{x}="+")$
- we collapse all states with same abstract labels
\Rightarrow abstract state space: $2^{A P}, A P=$ abstract propositions
For an explicity represented model M, we define the abstract (reduced) model $M_{r}=\left(S_{r}, S_{r}^{0}, R_{r}, L_{r}\right)$:
- $S_{r}=\left\{L_{r}(s) \mid s \in S\right\}=$ abstract labelings of states in S
$-S_{r}^{0}=\left\{s_{r}^{0} \in S_{r} \mid \exists s_{0} \in S^{0} . L_{r}\left(s_{0}\right)=s_{r}^{0}\right\}$ (labelings of initial states).
$-R_{r}\left(s_{r}, t_{r}\right) \Leftrightarrow \exists s, t \in S . R(s, t) \wedge L_{r}(s)=s_{r} \wedge L_{r}(t)=t_{r}$ (transitions between two abstract states if \exists transitions between concrete representatives)

We can prove: abstract model M^{\prime} simulates original (concrete) model M

Abstraction example

3-state traffic light reduced to 2 states

Note: the abstract system may introduce new behaviors (e.g., the system can stay in the "stop" state forever).

Consider a system represented implicitly, by predicates for the transition relation \mathcal{R} and the initial states \mathcal{S}_{0}.
We assume the same abstraction function for all variables, $h: D \rightarrow A$ ($D=$ concrete domain, $A=$ abstract domain)

We must define $\hat{\mathcal{S}_{0}}$ and $\hat{\mathcal{R}}$ for the abstract system:
$\widehat{\mathcal{S}_{0}}=\exists x_{1} \ldots \exists x_{n} . \mathcal{S}_{0}\left(x_{1}, \cdots, x_{n}\right) \wedge h\left(x_{1}\right)=\widehat{x_{1}} \wedge \cdots \wedge h\left(x_{n}\right)=\widehat{x_{n}}$
We similarly define $\widehat{\mathcal{R}}\left(\widehat{x_{1}}, \cdots \widehat{x_{n}}, \widehat{x_{1}}, \cdots \widehat{x_{n}}\right.$ ' $)$.
\Rightarrow from $\phi\left(x_{1}, \cdots, x_{n}\right)$ we obtain $\widehat{\phi}\left(\widehat{x_{1}}, \cdots, \widehat{x_{n}}\right)$ expressed in abstract variables

Transforming $\phi \rightarrow \bar{\phi}$ may be a complex operation \Rightarrow we apply it (like negation) just to elementary relations between variables (e.g., $=,<,>$, etc.).
Define by structural induction an approximate abstraction \mathcal{A} :
$-\mathcal{A}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)=\widehat{P}\left(\widehat{x_{1}}, \cdots, \widehat{x_{n}}\right)$, if P is an elementary relation.
$-\mathcal{A}\left(\neg P\left(x_{1}, \ldots, x_{n}\right)\right)=\neg \widehat{P}\left(\widehat{x_{1}}, \cdots, \widehat{x_{n}}\right)$
$-\mathcal{A}\left(\phi_{1} \wedge \phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \wedge \mathcal{A}\left(\phi_{2}\right) \quad-\mathcal{A}\left(\phi_{1} \vee \phi_{2}\right)=\mathcal{A}\left(\phi_{1}\right) \vee \mathcal{A}\left(\phi_{2}\right)$
$-\mathcal{A}(\exists x \phi)=\exists \hat{x} \mathcal{A}(\phi)$
$-\mathcal{A}(\forall x \phi)=\forall \widehat{x} \mathcal{A}(\phi)$

With the definitions so far, one can prove: $\forall \phi \cdot \widehat{\phi} \Rightarrow \mathcal{A}(\phi)$
In particula, $\hat{\mathcal{S}_{0}} \Rightarrow \mathcal{A}\left(\mathcal{S}_{0}\right)$ and $\hat{\mathcal{R}} \Rightarrow \mathcal{A}(\mathcal{R})$.
(approximation may introduce additional initial states and transitions)
Fie modelul abstract aproximat $M_{a}=\left(S_{r}, \mathcal{A}\left(\mathcal{S}_{0}\right), \mathcal{A}(\mathcal{R}), L_{r}\right)$. Then $M \preceq$ M_{a} (the abstract approximated model simulates the original)

If the abstraction function preserves the relations which corresponds to primitive operations in a program, the abstraction \mathcal{A} is exact.

An abstraction function h_{x} defines an equivalence relation between the concrete values for x which correspond to the same abstract values:

$$
d_{1} \sim_{x} d_{2} \Leftrightarrow h_{x}\left(d_{1}\right)=h_{x}\left(d_{2}\right)
$$

If the value of any primitive relation P in the program is the same for any two pair of equivalent concrete values:

$$
\forall d_{1}, \cdots d_{n}, d_{1}^{\prime}, \cdots d_{n}^{\prime} \cdot \bigwedge_{i=1}^{n} d_{i} \sim_{x_{i}} d_{i}^{\prime} \Rightarrow P\left(d_{1}, \cdots, d_{n}\right)=P\left(d_{1}^{\prime}, \cdots, d_{n}^{\prime}\right)
$$

then $M \simeq M_{a}$ (the abstract model simulates the concrete model)

A method for defining the abstract semantics of a program that can be used to analyse the program and produce information about its runtime behavior.
[Cousot \& Cousot '77]

Consists in:

- a concrete domain D and an abstract domain A, linked via a Galois connection:
- an abstraction function $\alpha: D \rightarrow A$
- a concretization function $\gamma: A \rightarrow \mathcal{P}(D)$ (associates to each abstract state a set of concrete states)
- a.T. $\forall x \in \mathcal{P}(D) . x \subseteq \gamma(\alpha(x))$ și $\forall a \in A . a=\alpha(\gamma(a))$
(abstraction followed by concretization introduces approximation) concretization followed by abstraction is exact
the majority of abstractions can be formulated in this general framework

Example: Abstractions modulo an integer
For arithmetic circuits/programs, the abstraction defined by:

$$
h(x)=x \bmod n, n \in \mathbf{Z}
$$

Preserves primitive mathematical relations, because

$$
((x \bmod n)+(y \bmod n)) \bmod n=(x+y) \bmod n, \text { etc. }
$$

Additionally (chinese remainder theorem): if $n_{1}, \cdots n_{k}$ relatively prime, and $n=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$, then

$$
x \equiv y(\bmod n) \Leftrightarrow \bigwedge_{i=1}^{k} x \equiv y\left(\bmod n_{i}\right)
$$

\Rightarrow to verify 16 -bit arithmetic, it suffices to verify the implementation for integers modulo $5,7,9,11,32$ (product $>2^{16}$)

Symbolic abstractions

To verify the datapaths of a system
(main function: computing and preserving values)
Example: correct transmission from a to b. Initially, for a fixed value:

$$
\mathbf{A G}(a=17 \rightarrow \mathbf{A X} b=17)
$$

Abstraction function: $\quad h(x)= \begin{cases}1 & \text { if } x=17 \\ 0 & \text { otherwise }\end{cases}$
More generally: we introduce the symbolic parameter c :
$h(x)= \begin{cases}1 & \text { if } x=c \\ 0 & \text { otherwise }\end{cases}$
\Rightarrow abstract transition relation $\hat{R}\left(\hat{a}, \widehat{a}^{\prime}, \widehat{b}, \hat{b}^{\prime}, c\right)$
In a BDD representation, c does not affect the complexity if the system behavior does not depend on c

Example: pipelined adder with two stages

$$
\mathbf{A G}(r e g 1=a \wedge r e g 2=b \rightarrow \mathbf{A X} \mathbf{A X} s u m=a+b)
$$

Compozitional reasoning

an application of "divide and conquer" to verification of a system built from components

- verification of local properties of components
- deriving global properties from component properties
- without constructing a model of the entire system (impractical)

Compositional reasoning: generic term for rules of the form
$-M_{1} \vDash f_{1} \wedge M_{2} \vDash f_{2} \Rightarrow \operatorname{Compose}\left(M_{1}, M_{2}\right) \vDash \operatorname{LogicOp}\left(f_{1}, f_{2}\right)$
e.g. parallel composition, and LogicOp $=\wedge$
$-M_{1} \prec M_{2} \Rightarrow \operatorname{CompOp}\left(M_{1}\right) \prec \operatorname{CompOp}\left(M_{2}\right)$
ex. $\prec=$ implementation, refinement; $\operatorname{CompOp}(\cdot)=\cdot \| M$
$-M_{1} \prec S_{1} \wedge M_{2} \prec S_{2} \Rightarrow \operatorname{Compose}\left(M_{1}, M_{2}\right) \prec \operatorname{Compose}\left(S_{1}, S_{2}\right)$

CSynchronous composition, simulation and fair ATCL
Let $M=\left(S, S_{0}, A P, L, R, F\right)$ and $M^{\prime}=\left(S^{\prime}, S_{0}^{\prime}, A P^{\prime}, L^{\prime}, R^{\prime}, F^{\prime}\right)$.
Define parallel synchronous composition $M^{\prime \prime}=M \| M^{\prime}$:
$-S^{\prime \prime}=\left\{\left(s, s^{\prime}\right) \in S \times S^{\prime} \mid L(s) \cap A P^{\prime}=L^{\prime}\left(s^{\prime}\right) \cap A P\right\}$
$-S_{0}^{\prime \prime}=\left(S_{0} \times S_{0}^{\prime}\right) \cap S^{\prime \prime}$
$-A P^{\prime \prime}=A P \cup A P^{\prime}$

- $L^{\prime \prime}\left(s, s^{\prime}\right)=L(s) \cup L^{\prime}\left(s^{\prime}\right)$
- $R^{\prime \prime}\left(\left(s, s^{\prime}\right)\left(t, t^{\prime}\right)\right)=R(s, t) \wedge R^{\prime}\left(s^{\prime}, t^{\prime}\right)$
- $F^{\prime \prime}=\left\{\left(P \times S^{\prime}\right) \cap S^{\prime \prime} \mid P \in F\right\} \cup\left\{\left(S \times P^{\prime}\right) \cap S^{\prime \prime} \mid P^{\prime} \in F^{\prime}\right\}$

We use ACTL with fairness: for any ACTL formula f we can construct
a tableau \mathcal{T}_{f}, and we have $M \models_{F} f \Leftrightarrow M \preceq_{F} \mathcal{T}_{f}$
\Rightarrow we can reason uniformly with formulas and models (tableaux)
(a) for any M și $M^{\prime}, M \| M^{\prime} \preceq_{F} M$.
(b) for any M, M^{\prime} și $M^{\prime \prime}, M \preceq_{F} M^{\prime} \Rightarrow M\left\|M^{\prime \prime} \preceq_{F} M^{\prime}\right\| M^{\prime \prime}$
(c) for any $M, M \preceq_{F} M \| M$

Folosim notația $\langle f\rangle M\langle g\rangle$:
Orice sistem care satisface prezumția f și conține M garantează g. (f, g sunt fie formule, fie modele)

O structură tipică de raționament:
\langle true $\rangle M\langle A\rangle \wedge\langle A\rangle M^{\prime}\langle g\rangle \wedge\langle g\rangle M\langle f\rangle \Rightarrow\langle$ true $\rangle M| | M^{\prime}\langle f\rangle$
Instanțiere în termeni concreți:
$M=$ un transmițător complex
$A=$ un model simplu de transmițător periodic \langle true $\rangle M\langle A\rangle$: M funcționează la fel ca și A
$M^{\prime}=$ un receptor
$g=$ "mesajele sunt preluate la timp"
$\langle A\rangle M^{\prime}\langle g\rangle=M^{\prime}$ compus cu A preia mesajele la timp
$f=$ "nu avem buffer overflow"
$\langle g\rangle M\langle f\rangle=$ dacă M e intr-un sistem care preia mesajele la timp, nu avem buffer overflow.
\Rightarrow in sistemul $M \| M^{\prime}$ nu apare buffer overflow.

Justificarea raționamentului

(1) $M \preceq_{F} A$	ipoteză			
(2) $M\left\\|M^{\prime} \preceq_{F} A\right\\| M^{\prime}$	(1) și compoziționalitate (a)			
(3) $A \\| M^{\prime}=_{F} g$	ipoteză			
(4) $A \\| M^{\prime} \preceq_{F} \mathcal{T}_{g}$	(3) și prop. tabloului ACTL			
(5) $M \\| M^{\prime} \preceq_{F} \mathcal{I}_{g}$	(2), (4) și tranzitivitatea \preceq_{F}			
(6) $M\\|M\\| M^{\prime} \preceq_{F} \mathcal{T}_{g} \\| M$	(5) și compoziționalitate (b)			
(7) $\mathcal{T}_{g} \\| M=_{F} f$	ipoteză			
(8) $M\\|M\\| M^{\prime}=_{F} f$	(6), (7) si $\preceq_{F} \Rightarrow \models_{F}$			
(9) $M \preceq_{F} M \\| M$	compoziționalitate (c)			
(10) $M\left\\|M^{\prime} \preceq_{F} M\right\\| M \\| M^{\prime}$	(9) și compoziționalitate (b)			
(11) $M \\| M^{\prime} \models_{F} f$	(8), (10) și $\preceq_{F} \Rightarrow \models_{F}$			

Demonstratoare de teoreme pot mecaniza descompunerea in raționamente pe componente și asigura validitatea deducției.

Circular assume-guarantee

Often, compositional rules are not strong enough. Consider implementations M_{i} and specifications $S_{i}, i=1,2$.
To prove $M_{1}\left\|M_{2} \prec S_{1}\right\| S_{2}$ it would suffice if $M_{1} \prec S_{1}$ and $M_{2} \prec S_{2}$.
But frequently, these individual relations are not satisfied:

- components M_{1} and M_{2} are not independently designed
- each one relies on functioning in an environment provided by the other one

Exemplu de dependențe

Modelăm algoritmul obișnuit de împărțire a două numere, $n \div d$, în baza b, cu două componente:
$M_{Q}($ in $: r, d ;$ out $: q)$ calculează următoarea cifră din cât: $q=\lfloor r / d\rfloor$
$M_{R}($ in $: n, d, q$; out $: r)$ actualizează restul: $r^{\prime}=(r-q * d) * b+n e x t _d i g i t(n)$

Dorim ca $M_{Q} \| M_{R}$ să satisfacă impreună următorii invarianți:

- $S_{Q}: 0 \leq q<b \wedge q * d \leq r<(q+1) * d$
- $S_{R}: 0 \leq r<b * d$

Totuși, individual nu avem nici $M_{Q} \models S_{Q}$ sii nici $M_{R} \models S_{R}$: funcționarea corectă a fiecărui modul depinde de celălalt
Dar avem $S_{Q} \Rightarrow M_{R} \models S_{R}$ și $S_{R} \Rightarrow M_{Q} \models S_{Q}$.
(un modul funcționează corect în mediul dat de specificarea celuilalt)
\Rightarrow Putem deduce de aici că $M_{Q} \| M_{R} \vDash S_{Q} \wedge S_{R}$?

Circular assume-guarantee rules

Studied in various contexts [Chandi \& Misra'81, Abadi \& Lamport'93]
We refer to Reactive Modules [Alur \& Henzinger '95]:

- modules with input and putput variables, and transition relation
- dependence relation $\prec \subseteq\left(V_{\text {in }} \cup V_{\text {out }}\right) \times V_{\text {out }}$
$-x \prec y: y$ depends combinaționally on x;
otherwise, only the next value of y can depend sequentially on x
- synchronous parallel composition $M_{1} \| M_{2}$ is possible if $V_{\text {out }}\left(M_{1}\right) \cap V_{\text {out }}\left(M_{2}\right)=\emptyset$ and $\prec_{M_{1}} \cup \prec_{M_{2}}$ is an acyclic relation We define the refinement (implementation) relation $M \leq M^{\prime}$ iff $V\left(M^{\prime}\right) \subseteq V(M), V_{\text {out }}\left(M^{\prime}\right) \subseteq V_{\text {out }}(M), \prec_{M} \supseteq \prec_{M}^{\prime},\left.\mathcal{L}(M)\right|_{V\left(M^{\prime}\right)} \subseteq \mathcal{L}\left(M^{\prime}\right)$
(first 3 conditions: if P can function in a context, so can Q)

For reactive modules: \quad| $M_{1}\left\\|S_{2} \leq S_{1}\right\\| S_{2}$ |
| :--- |
| $S_{1}\left\\|M_{2} \leq S_{1}\right\\| S_{2}$ |
| $M_{1}\left\\|M_{2} \leq S_{1}\right\\| S_{2}$ |

(assuming all compositions well defined)
Advantage: although there are two relations to prove, each is simpler than the original one.

- specification description S_{i} is much simpler than the implementation M_{i}
- need not compose two different implementations (often impossible)

Rule with temporal induction [McMillan'97]
valid for invariants (safety properties)

- if $P_{1} \wedge Q_{1}$ true at $0,1, \cdots, t \Rightarrow Q_{2}$ true at $t+1$
- if $P_{2} \wedge Q_{2}$ true at $0,1, \cdots, t \Rightarrow Q_{1}$ true at $t+$ orice
- then for any $t, P_{1} \wedge P_{2} \Rightarrow Q_{1} \wedge Q_{2}$

Compositionality and refinement

[Henzinger'01] - study of the theory of interfaces
For a refinement relation \leq and a composition relation \|, we wish: If $M_{1} \leq S_{1}$ and $M_{2} \leq S_{2}$, then $M_{1}\left\|M_{2} \leq S_{1}\right\| S_{2}$

Generally, insufficient - components may be incompatible.
\Rightarrow two variants:

- If $M_{1} \leq S_{1}$ and $M_{2} \leq S_{2}$, and $M_{1} \| M_{2}$ is defined, then $S_{1} \| S_{2}$ is defined and $M_{1}\left\|M_{2} \leq S_{1}\right\| S_{2}$
- formalism focused on components
- allows independent verification of components (bottom-up)
- If $M_{1} \leq S_{1}$ and $M_{2} \leq S_{2}$, and $S_{1} \| S_{2}$ is defined, then $M_{1} \| M_{2}$ is defined and $M_{1}\left\|M_{2} \leq S_{1}\right\| S_{2}$
- formalism focused on interfaces
- allows independent implementation of interfaces (top-down)

