Comparing models. Abstraction. Compositional reasoning

2

Comparing models. Abstraction. Compositional reasoning

	Problem setting				
	Specification formulas can be converted to automata		Language inclusion (trace inclusion)		
omparing models. Abstraction. Compositional reasonir	(LTL tableau construction) – represent "simplest" system that conforms t	(LTL tableau construction) – represent "simplest" system that conforms to the specification		Consider a Kripke structure ${\cal M}$ with a set ${\cal AP}$ of atomic propositions	
28 octombrie 2003	When using an automaton as specification: – what does it mean to say "system functions like this automaton"		Language of M = set of execution traces seen as sequences of laber Formally: $\mathcal{L}(M)$ = set of infinite words (strings) $\alpha_0 \alpha_1 \alpha_2 \dots$		
	How does one build (abstract) a simpler mode Does verifying a simpler model ensure correct	How does one build (abstract) a simpler model from a complex one ? Does verifying a simpler model ensure correctness of the initial one ?		with $L(s_i) = \alpha_i$.	
	Can one deduce correctness of a composite model from proving properties of the components ?		$\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathcal{S}) \Leftrightarrow \forall \mathbf{A} f \in LTL \ . \ \mathcal{S} \models \mathbf{A} f \Rightarrow \mathcal{M} \models \mathbf{A} f$		
Formal verification. Lecture 7 Marius Minea	Formal verification. Lecture 7	Marius Minea	Formal verification. Lecture 7	Marius Minea	
Comparing models. Abstraction. Compositional reasoning 4	Comparing models. Abstraction. Compositional reasoning BISIMULATION relation	n ⁵	Comparing models. Abstraction. Compositional reasoning	6	
	Let M and M' be two structures with $AP' = AP$. A relation $\simeq \subseteq S \times S'$		Example: language inclusion and simulation		

Consider two structures M and M', with $AP \supseteq AP'$. A relation $\preceq \subseteq S \times S'$ is a *simulation* relation between M and M' iff $\forall s \preceq s'$: $-L(s) \cap AP' = L'(s')$ (*s* and *s'* labeled identically with respect to AP') $-\forall s_1$ with $s \to s_1$ there exists s'_1 with $s' \to s'_1$ and $s_1 \preceq s'_1$ (any successor of *s* is simulated by a successor of *s'*)

The structure M' simulates M ($M \leq M'$) of there exists a simulation relation \leq such that for the initial states: $\forall s_0 \in S_0 \exists s'_0 \in S'_0 . s_0 \leq s'_0$

Prop.: The simulation relation is a *preorder* over the set of structures (reflexive and transitive). We choose: $s \preceq s'' \Leftrightarrow \exists s' \cdot s \preceq 1 s' \wedge s' \preceq 2 s''$

Theorem: If $M \preceq M'$, then $M' \models f \Rightarrow M \models f$, for any ACTL* formula f over AP'.

Formal verification. Lecture 7

Marius Minea

Let *M* and *M'* be two structures with AP' = AP. A relation $\simeq \subseteq S \times S$ is a *bisimulation* relation between *M* and *M'* iff $\forall s, s'$ with $s \simeq s'$: - L(s) = L(s')

 $-\forall s_1 \text{ with } s \rightarrow s_1 \text{ there exists } s'_1 \text{ with } s' \rightarrow s'_1 \text{ and } s_1 \simeq s'_1$ $-\forall s'_1 \text{ with } s' \rightarrow s'_1 \text{ there exists } s_1 \text{ with } s \rightarrow s_1 \text{ and } s_1 \simeq s'_1$

 $(or: \simeq a symmetric simulation relation between M and M' and between M' and M)$

Structures M and M' are *bisimilar* if there exists a bisimulation relation \simeq such that for initial states: $\forall s_0 \in S_0 \ \exists s'_0 \in S'_0 \ . \ s_0 \simeq s'_0$, and $\forall s'_0 \in S'_0 \ \exists s_0 \in S_0 \ . \ s_0 \simeq s'_0$.

 $\mathsf{Prop.:}$ The bisimulation relation is an equivalence relation among structures

Theorem: If $M \simeq M'$ then $\forall f \in CTL*$, $M \models f \Leftrightarrow M' \models f$. Conversely: Two structures that satisfy the same CTL* (or even CTL) formulas are bisimilar (equivalently: two structures which are not bisimilar can be distinguished by a CTL formula).

Formal verification. Lecture 7

Generally: $M \leq M' \Rightarrow \mathcal{L}(M)|_{AP'} \subseteq \mathcal{L}(M')$ In the figure: $\mathcal{L}(M_1) = \mathcal{L}(M_2)$, $M_1 \leq M_2$, $M_2 \not\leq M_1$ Equivalent definition (game theory): $M \leq M'$ if any move in M can be matchd by an equally labelled move in M'.

Formal verification. Lecture 7

Marius Minea

Marius Minea

Comparing models. Abstraction. Compositional reasoning Example: simulation and bisimulation

Generally: $M \simeq M' \Rightarrow M \prec M' \land M' \prec M$

In the figure: $M_1 \prec M_2$, $M_2 \prec M_1$ but $M_1 \not\simeq M_2$ Equivalent definition (as a game): $M \simeq M'$ if any choice of a model and of a move in it can be matched by an equally labelled move in the other model.

(choice of model done at each step \Rightarrow symmetry)

Formal verification. Lecture 7

Comparing models. Abstraction. Compositional reasoning

Comparing models. Abstraction. Compositional reasoning

7

Marius Minea

10

Example: bisimulation

 $M_1 \simeq M_2$ (duplicating nodes does not change branching properties)

Comparing models. Abstraction. Compositional reasoning

Formal verification. Lecture 7

Marius Minea

11

Formal verification. Lecture 7

- L(s) = L(s')

Comparing models. Abstraction. Compositional reasoning

 $\pi' = s's'_1s'_2\ldots$ in M' such that $\forall i > 0$. $s_i \leq s'_i$. If $M \prec_F M'$, then $\forall f \in ACTL^*$, $M' \models_F f \Rightarrow M \models_F f$

tween M and M' (with AP' = AP) iff $\forall s \simeq_F s'$:

 $\pi' = s's'_1s'_2\ldots$ in M' such that $\forall i > 0 . s_i \simeq s'_i$.

Comparing models. Abstraction. Compositional reasoning

- for any fair $\pi' = s's'_1s'_2...$ in M' there exists

a fair path $\pi = ss_1s_2...$ in M such that $\forall i > 0 . s_i \simeq s'_i$.

If $M \simeq_F M'$, then $\forall f \in CTL_*$, $M' \models_F f \Leftrightarrow M \models_F f$

M' (with $AP' \subseteq AP$) iff $\forall s \prec_F s'$: $-L(s) \cap AP' = L'(s')$

Extension to fairness The relation $\prec_F \subseteq S \times S'$ is a *fair* simulation relation between M and

The relation $\simeq_F \subseteq S \times S'$ is an *fair* bisimulation relation *echitabilă* be-

- for any *fair* path $\pi = ss_1s_2...$ in *M* there exists a fair path

- for any *fair* path $\pi = ss_1s_2...$ in *M* there exists a fair path

Marius Minea

12

9

Algorithms for checking bisimulation Deterministic system = single initial state; any two successors differently labeled $s \rightarrow s_1 \land s \rightarrow s_2 \land s_1 \neq s_2 \Rightarrow L(s_1) \neq L(s_2)$ Simulation: M, M' deterministic: $M \preceq M' \Leftrightarrow \mathcal{L}(M) \subseteq \mathcal{L}(M')$		Abstraction: Introduction Abstraction is the key step in verifying systems of realistic size. • it means constructing an abstract system (with fewer details) • and establishing a correspondence between the abstract and the original system exact abstractions: preserve truth value 		Examples of encountered abstractions		
				Timed abstractions (region automaton; zone graph) – are <i>finite</i> abstractions of an infinite-state systems		
				 several states in the concrete system match a state in the abstr system 		
In general, we recursively define: $s \preceq_0 s' \Leftrightarrow L(s) \cap AP' = L(s')$ $s \preceq_{n+1} s' \Leftrightarrow s \preceq_n s' \land \forall s_1 . s \to s_1 \Rightarrow \exists s'_1 . s' \to s'_1 \land s_1 \preceq_n s'_1$ We have $\preceq_{i+1} \subseteq \preceq_i \Rightarrow \exists n . \preceq_n = \preceq_{n+1} = \preceq$ (finite models)		 conservative abstractions (approximat stract system implies correctness of real s (counterexample in the abstract system one) 	ions): correctness of ab- ystem, but not conversely may not exist in the real	A <i>specification</i> is usually an abstraction of the implementation – the tableau for the LTL formula is an abstraction for a system that satisfies it		
Bismulation: M, M' deterministic: $M \simeq M' \Leftrightarrow \mathcal{L}(M) = \mathcal{L}(M')$		The abstract model must be obtained with	nout building the concrete	Refinement relations (language inclusion, simulation, etc.) between		
In general, we recursively define: $s \simeq_0 s' \Leftrightarrow L(s) = L(s')$ $s \simeq_{n+1} s' \Leftrightarrow s \simeq_n s' \land \forall s_1[s \to s_1 \Rightarrow \exists s'_1 . s' \to s'_1 \land s_1 \simeq_n s'_1]$ $\land \forall s'_1[s' \to s'_1 \Rightarrow \exists s_1 . s \to s_1 \land s_1 \simeq_n s'_1]$ We have $\simeq_{i+1} \subseteq \simeq_i \Rightarrow \exists n . \simeq_n = \simeq_{n+1} = \simeq$ (finite models)		one (the latter is often impossible due to size) – <i>syntactic</i> abstraction techniques – <i>semantic</i> abstraction techniques (e.g. red	uced domain for variables)	two different systems. Using 1-bit packets in the protocol model of project 1 (data abstrac- tion)		
Formal verification. Lecture 7 N	Iarius Minea	Formal verification. Lecture 7	Marius Minea	Formal verification. Lecture 7 Marius Minea		

Formal verification. Lecture 7

Marius Minea

8

Comparing models. Abstraction. Compositional reasoning

13

16

Cone of influence reduction

Abstraction by removal of variables that do not affect specification.

Let M be a system with variable set $V = \{v_1, v_2, \dots, v_n\}$ described by the equations $v'_i = f_i(V)$.

Let V' be the set of variables referenced in the specification. The *cone of influence* of V' = minimal set $C \subseteq V$ such that $-V' \subseteq C$

- if $v_i \in C$, and f_i depends on v_i , then $v_i \in C$ (transitive closure)

We build a new system M' eliminating all the variables that do not appear in C, together with their functional equations.

ormal verification. Lecture 7	Marius Minea

We prove that cone of influence reduction preserves the truth values of CTL* specifications (defined over variables from C).

Let $V = \{v_1, v_2, \dots v_n\}$ be a set of *boolean* variables. and $M = (S, S_0, R, L)$, with: $-S = \{0,1\}^n$ = set of assignments to V: $S_0 \subseteq S$ $-R = \bigwedge_{i=1}^{n} (v_i' = f_i(V))$ $-L(s) = \{v_i | s(v_i) = 1\}$ (variables equal to 1 in s) Let V be numbered such that $C = \{v_1, \dots, v_k\}$. We define M' = (S', S'_0, R', L') : $-S' = \{0,1\}^k$ = set of assignments to C

 $-S_0 = \{(d_1', \cdots, d_k') | \exists (d_1, \cdots d_n) \in S_0 \text{ cu } d_1' = d_1 \land \ldots \land d_k' = d_k \}$

$$-R' = \bigwedge_{i=1}^{\kappa} (v'_i = f_i(C))$$

 $-L'(s) = \{v_i | s'(v_i) = 1\}$

Formal verification. Lecture 7

We can show that the concrete model M and the abstract model M'are bisimilar.

Marius Minea

Marius Minea

14

Comparing models. Abstraction. Compositional reasoning

Program slicing

A similar but more general notion for programs [Weiser'79]

- inspired by the mental processes performed during debugging

= calculating the program fragment that can affect the computed values in a given point of interest (slicing criterion) (e.g. variable at source line)

- usually: an executable program fragment, in source language
- based on program analysis notions of control and data dependence

Types of slicing:

- static or dinamic
- syntactic or semantic criteria
- forward or backward traversal of control graph
- type of control graph dependence: forward/backward; direct/transitive
- on all or some paths through control graph

Formal verification. Lecture 7

Marius Minea

15

Comparing models, Abstraction, Compositional reasoning 17 Comparing models, Abstraction, Compositional reasoning Data abstraction - for any variable x, we define an abstract variable \hat{x} Abstraction example - used for reasoning about circuits with large bit width, or about - we label states with atomic propositions indicating the abstract value programs with complex data structures (for sign abstraction: 3 propositions p_x^- , p_x^0 , p_x^+ for each variable x, in-- useful if data processing operations are relatively simple (transfer, dicating $\hat{x} = " - "$, $\hat{x} = 0$, $\hat{x} = " + "$) 3-state traffic light reduced to 2 states small number of arithmetic / logic ops) - we collapse all states with same abstract labels \Rightarrow abstract state space: 2^{AP} . AP = abstract propositions Main idea: establishing a correspondence between original domain of $L_r(R) = stop$ data and a smaller-size domain (usually a few values) $L_r(G) = stop$ For an *explicity* represented model M, we define the abstract (reduced) model $M_r = (S_r, S_r^0, R_r, L_r)$: $L_r(V) = go$ Example: sign abstraction $-S_r = \{L_r(s) \mid s \in S\}$ = abstract labelings of states in S ⇒ — if x < 0</p> + 0 - $-S_r^0 = \{s_r^0 \in S_r \mid \exists s_0 \in S^0 \ L_r(s_0) = s_r^0\}$ (labelings of initial states). relabeling collansing h(x) = -0 if x = 00 0 0 0 - 0 + 0 $-R_r(s_r,t_r) \Leftrightarrow \exists s,t \in S \ . \ R(s,t) \land L_r(s) = s_r \land L_r(t) = t_r$ (transitions + if x > 0+|+++0 +between two abstract states if \exists transitions between concrete repre-Note: the abstract system may introduce new behaviors (e.g., the where $T = \{-, 0, +\}$

 \Rightarrow we can not always have a precise abstraction

 \Rightarrow abstraction domain and function must be carefully chosen

Formal verification.	Lecture 7	Marius Minea	

Comparing models. Abstraction. Compositional reasoning Generating the abstract system

sentatives)

We can prove: abstract model M' simulates original (concrete) model M

Formal verification. Lecture 7

system can stay in the "stop" state forever).

Formal verification. Lecture 7

Marius Minea

18

Comparing models. Abstraction. Compositional reasoning EXACT and approximate abstractions

Consider a system represented implicitly, by predicates for the transition relation \mathcal{R} and the initial states \mathcal{S}_0 .

19

Marius Minea

22

We assume the same abstraction function for all variables. $h: D \to A$ (D = concrete domain, A = abstract domain)

We must define S_0 and $\hat{\mathcal{R}}$ for the abstract system: $\hat{\mathcal{S}}_0 = \exists x_1 \dots \exists x_n \, . \, \tilde{\mathcal{S}}_0(x_1, \dots, x_n) \wedge h(x_1) = \hat{x_1} \wedge \dots \wedge h(x_n) = \hat{x_n}$ We similarly define $\widehat{\mathcal{R}}(\widehat{x_1}, \cdots, \widehat{x_n}, \widehat{x_1}', \cdots, \widehat{x_n}')$. \Rightarrow from $\phi(x_1, \dots, x_n)$ we obtain $\hat{\phi}(\hat{x_1}, \dots, \hat{x_n})$ expressed in abstract variables

Transforming $\phi \rightarrow \hat{\phi}$ may be a complex operation \Rightarrow we apply it (like negation) just to elementary relations between variables (e.g., =, <, >,etc.).

Define by structural induction an approximate abstraction \mathcal{A} :

 $-\mathcal{A}(P(x_1,\ldots,x_n)) = \hat{P}(\hat{x_1},\cdots,\hat{x_n})$, if P is an elementary relation.

 $-\mathcal{A}(\neg P(x_1,\ldots,x_n)) = \neg \hat{P}(\hat{x_1},\cdots,\hat{x_n})$

Comparing models, Abstraction, Compositional reasoning

- $\begin{array}{l} -\mathcal{A}(\phi_1 \land \phi_2) = \mathcal{A}(\phi_1) \land \mathcal{A}(\phi_2) & -\mathcal{A}(\phi_1 \lor \phi_2) = \mathcal{A}(\phi_1) \lor \mathcal{A}(\phi_2) \\ -\mathcal{A}(\exists x \phi) = \exists \hat{x} \, \mathcal{A}(\phi) & -\mathcal{A}(\forall x \phi) = \forall \hat{x} \, \mathcal{A}(\phi) \end{array}$

Formal verification. Lecture 7

Comparing models. Abstraction. Compositional reasoning Exact and approximate abstractions (cont'd)

With the definitions so far, one can prove: $\forall \phi : \hat{\phi} \Rightarrow \mathcal{A}(\phi)$ In particula, $\hat{\mathcal{S}}_0 \Rightarrow \mathcal{A}(\mathcal{S}_0)$ and $\hat{\mathcal{R}} \Rightarrow \mathcal{A}(\mathcal{R})$.

(approximation may introduce additional initial states and transitions)

Fie modelul abstract approximat $M_a = (S_r, \mathcal{A}(\mathcal{S}_0), \mathcal{A}(\mathcal{R}), L_r)$. Then $M \preceq$ M_a (the abstract approximated model simulates the original)

If the abstraction function preserves the relations which corresponds to primitive operations in a program, the abstraction \mathcal{A} is exact.

An abstraction function h_x defines an equivalence relation between the concrete values for x which correspond to the same abstract values:

 $d_1 \sim_x d_2 \Leftrightarrow h_x(d_1) = h_x(d_2)$

If the value of any primitive relation P in the program is the same for any two pair of equivalent concrete values:

 $\forall d_1, \cdots, d_n, d'_1, \cdots, d'_n \land \bigwedge_{i=1}^n d_i \sim_{x_i} d'_i \Rightarrow P(d_1, \cdots, d_n) = P(d'_1, \cdots, d'_n)$ then $M \simeq M_a$ (the abstract model simulates the concrete model) Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction, Compositional reasoning Abstract interpretation

A method for defining the *abstract semantics* of a program that can be used to analyse the program and produce information about its runtime behavior. [Cousot & Cousot '77]

Consists in:

20

23

- a concrete domain D and an abstract domain A. linked via a Galois connection.

– an abstraction function $\alpha: D \to A$

Formal verification. Lecture 7

- a concretization function $\gamma : A \to \mathcal{P}(D)$

Comparing models. Abstraction. Compositional reasoning

(associates to each abstract state a set of concrete states)

 $-a.i. \quad \forall x \in \mathcal{P}(D) , x \subseteq \gamma(\alpha(x)) \text{ si } \forall a \in A, a = \alpha(\gamma(a))$

(abstraction followed by concretization introduces approximation) concretization followed by abstraction is exact

the majority of abstractions can be formulated in this general framework

Marius Minea

24

Symbolic destructionsExample: Abstractions modulo an integerfor arithmetic circuits/programs, the abstraction defined to:
$$h(x) = x \mod n, n \in \mathbb{Z}$$
The server primitive mathematical relations, because $(x \mod n) + (y \mod n) \mod n = (x + y) \mod n, e(x + y) $(x \mod n) + (y \mod n) \mod n = (x + y) \mod n, e(x + y)Additionally (chinese remainder theorem): if $n_1, \cdots n_k$ relatively relations $x = y \pmod{n \oplus n} \leftrightarrow h_{k=1}^k = y \pmod{n \oplus n}$ $x = y \pmod{n \oplus n} \leftrightarrow h_{k=1}^k = x + y \pmod{n \oplus n}$ $x = y \pmod{n \oplus n} \leftrightarrow h_{k=1}^k = x + y \pmod{n \oplus n}$ $x = b \operatorname{verlifetion} relation $R(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relations $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relations $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relations $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relations $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relations $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relations $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relation $h(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relation relation $R(\tilde{n}, \tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relation relation $R(\tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relation relation $R(\tilde{n}, \tilde{h}, \tilde{h}, \tilde{h})$ $h = b \operatorname{verlifetion} relation relation $h = h \operatorname{verlifetion} relation relation relation $h = h \operatorname{verlifetion} relation relation relation relation $h = h \operatorname{verlifetion} relation relatio$$$$$$$$$$$$$$$$$

Comparing models, Abstraction, Compositional reasoning

Comparing models. Abstraction. Compositional reasoning	25	Comparing models. Abstraction. Compositional reasoning Non-CITCUIAT assume-g	uarantee 26	Comparing models. Abstraction. Com	positional reasoning	27
CSynchronous composition, simulation and fair ATCL Let $M = (S, S_0, AP, L, R, F)$ and $M' = (S', S'_0, AP', L', R', F')$. Define parallel synchronous composition $M'' = M M'$:		Folosim notația $\langle f \rangle M \langle g \rangle$: Orice sistem care satisface prezumția f și conține M garantează g . (f , g sunt fie formule, fie modele)		Justificarea raționamentului		
				(1) $M \preceq_F A$ ipoteză (2) $M M' \preceq_F A M'$ (1) și compoziționalitate (a) (2) $A M' = 2$ ipoteză		
$ \begin{aligned} -S &= \{(s,s) \in S \times S \mid L(s) \cap AF = L(s) \cap AF \} \\ -S_0'' &= (S_0 \times S_0') \cap S'' \\ -AP'' &= AP \cup AP' \\ -L''(s,s') &= L(s) \cup L'(s') \end{aligned} $		$\langle true \rangle M(A) \land \langle A \rangle M'(g) \land \langle g \rangle M(f) \Rightarrow \langle true \rangle M$ Instanțiere în termeni concreți: M = un transmițător complex	$ M'\langle f angle$	(5) $A M \vdash_F g$ (4) $A M' \preceq_F Tg$ (5) $M M' \preceq_F Tg$ (6) $M M M' \preceq_F Tg M$ (7) $T = Tg M$	(3) și prop. tabloului ACTL (2), (4) și tranzitivitatea \leq_F (5) și compoziționalitate (b)	
$R'((s, s')(t, t')) = R(s, t) \land R'(s', t')$ $- F'' = \{(P \times S') \cap S'' \mid P \in F\} \cup \{(S \times P') \cap S'' \mid P' \in F'\}$ We use ACTL with fairness: for any ACTL formula f we can construct a tableau T_f , and we have $M \models_F f \Leftrightarrow M \preceq_F T_f$ \Rightarrow we can reason uniformly with formulas and models (tableaux) (a) for any $M \notin M', M \mid M' \preceq_F M$. (b) for any $M, M' \notin M'', M \preceq_F M' \Rightarrow M \mid M'' \preceq_F M' \mid M''$ (c) for any $M, M \preceq_F M \mid M$		$A =$ un model simplu de transmitător periodic $\langle true \rangle M(A)$: M funcționează la fel ca și A $(1) I_g M \models_F f$ $(pote2a$ $M' =$ un receptor $M' =$ un receptor $(9) M \downarrow_F M M \rangle \models_F f$ $(6), (7) \downarrow_S \downarrow_F \Rightarrow \models$ $g =$ "mesajele sunt preluate la timp" $\langle A \rangle M' \langle g \rangle = M'$ compus cu A preia mesajele la timp $(10) M M' \downarrow_F f$ $(8), (10) \downarrow_F \Rightarrow \models$ $f =$ "nu avem buffer overflow" $\langle g \rangle M \langle f \rangle =$ dacă M e într-un sistem care preia mesajele la timp, nu avem buffer overflow.Demonstratoare de teoreme pot mecaniza desc în raționamente pe componente și asigura valio		poteza (6), (7) și $\leq_F \Rightarrow \models_F$ compoziționalitate (c) (9) și compoziționalitate (b)		
				(8), (10) și $\preceq_F \Rightarrow \models_F$		
				Demonstratoare de teoreme pot mecaniza descompunerea în raționamente pe componente și asigura validitatea deducției.		iei.
Formal verification. Lecture 7	Marius Minea	Formal verification. Lecture 7	Marius Minea	Formal verification. Lecture 7	٩	Marius Minea

Comparing models. Abstraction. Compositional reasoning	28	Comparing models. Abstraction. Compositional reasoning Exemplu de dependențe	29	Comparing models. Abstraction. Compositional reasoning	30						
		Modelăm algoritmul obișnuit de împărtire a două ni	umere. $n \div d$	Circular assume-guarantee ru	iles						
Circular assume-guarantee Often, compositional rules are not strong enough. Consider implementations M_i and specifications S_i , $i = 1, 2$. To prove $M_1 M_2 \prec S_1 S_2$ it would suffice if $M_1 \prec S_1$ and $M_2 \prec S_2$. But frequently, these individual relations are not satisfied: – components M_1 and M_2 are not independently designed – each one relies on functioning in an environment provided by the other one		în baza b, cu două componente: $M_Q(in: r, d; out: q)$ calculează următoarea cifră din cât: $q = \lfloor r/d \rfloor$ $M_R(in: n, d, q; out: r)$ actualizează restul: $r' = (r-q*d)*b+next_digit(n)$ Dorim ca $M_Q M_R$ să satisfacă împreună următorii invarianți: • $S_Q: 0 \le q < b \land q * d \le r < (q+1) * d$ • $S_R: 0 \le r < b * d$ Totuși, individual nu avem nici $M_Q \models S_Q$ și nici $M_R \models S_R$: funcționarea corectă a fiecărui modul depinde de celălalt Dar avem $S_Q \Rightarrow M_R \models S_R$ și $S_R \Rightarrow M_Q \models S_Q$. (un modul funcționează corect în mediul dat de specificarea celuilalt) \Rightarrow Putem deduce de aici că $M_Q M_R \models S_Q \land S_R$?		Studied in various contexts [Chandi & Misra'81, Abadi & Lamport'93] We refer to Reactive Modules [Alur & Henzinger '95]: – modules with input and putput variables, and transition relation – dependence relation $\prec \subseteq (V_{in} \cup V_{out}) \times V_{out}$ – $x \prec y$: y depends combinationally on x ; otherwise, only the next value of y can depend sequentially on x – synchronous parallel composition $M_1 M_2$ is possible if $V_{out}(M_1) \cap V_{out}(M_2) = \emptyset$ and $\prec_{M_1} \cup \prec_{M_2}$ is an acyclic relation We define the <i>refinement</i> (implementation) relation $M \leq M'$ iff $V(M') \subseteq V(M), V_{out}(M') \subseteq V_{out}(M), \prec_M \supseteq \prec'_M, \mathcal{L}(M) _{V(M')} \subseteq \mathcal{L}(M')$ (first 3 conditions: if P can function in a context, so can Q)							
						Formal verification. Lecture 7	Marius Minea	Formal verification. Lecture 7	Marius Minea	Formal verification. Lecture 7	Marius Minea

Comparing models. Abstraction. Compositional reasoning Circular assume-guarantee rules (cont'd)

For reactive modules: $\frac{M_1||S_2 \leq S_1||S_2}{S_1||M_2 \leq S_1||S_2}$

(assuming all compositions well defined)

Advantage: although there are two relations to prove, each is simpler than the original one.

– specification description ${\cal S}_i$ is much simpler than the implementation ${\cal M}_i$

- need not compose two different implementations (often impossible)

Rule with temporal induction [McMillan'97]

valid for *invariants* (safety properties)

- if $P_1 \land Q_1$ true at $0, 1, \dots, t \Rightarrow Q_2$ true at t+1

- if $P_2 \wedge Q_2$ true at $0, 1, \dots, t \Rightarrow Q_1$ true at t + orice

- then for any $t, P_1 \wedge P_2 \Rightarrow Q_1 \wedge Q_2$

Formal verification. Lecture 7

Comparing models. Abstraction. Compositional reasoning Compositionality and refinement [Henzinger'01] - study of the theory of interfaces

For a refinement relation \leq and a composition relation ||, we wish: If $M_1 \leq S_1$ and $M_2 \leq S_2$, then $M_1 || M_2 \leq S_1 || S_2$

Generally, insufficient – components may be incompatible. \Rightarrow two variants:

• If $M_1 \leq S_1$ and $M_2 \leq S_2$, and $M_1 || M_2$ is defined, then $S_1 || S_2$ is defined and $M_1 || M_2 \leq S_1 || S_2$

formalism focused on *components*

- allows independent verification of components (bottom-up)

• If $M_1 \leq S_1$ and $M_2 \leq S_2$, and $S_1 || S_2$ is defined,

then $M_1||M_2$ is defined and $M_1||M_2 \leq S_1||S_2|$

- formalism focused on interfaces

- allows independent implementation of interfaces (top-down)

Formal verification. Lecture 7

31

Marius Minea

Marius Minea

32