
Comparing models. Abstraction. Compositional reasoning

28 octombrie 2003

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 2

Problem setting

Specification formulas can be converted to automata

(LTL tableau construction)

– represent “simplest” system that conforms to the specification

When using an automaton as specification:

– what does it mean to say “system functions like this automaton”

How does one build (abstract) a simpler model from a complex one ?

Does verifying a simpler model ensure correctness of the initial one ?

Can one deduce correctness of a composite model from proving

properties of the components ?

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 3

Language inclusion (trace inclusion)

Consider a Kripke structure M with a set AP of atomic propositions

Language of M = set of execution traces seen as sequences of labels

Formally: L(M) = set of infinite words (strings) α0α1α2 . . .

such that there exists a path s0s1s2 . . . of M with L(si) = αi.

Language inclusion preserves LTL properties:

L(M) ⊆ L(S) ⇔ ∀Af ∈ LTL . S |= Af ⇒ M |= Af

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 4

Simulation relation

Consider two structures M and M ′, with AP ⊇ AP ′. A relation

� ⊆ S × S′ is a simulation relation between M and M ′ iff ∀s � s′:

– L(s) ∩ AP ′ = L′(s′) (s and s′ labeled identically with respect to AP ′)

– ∀s1 with s → s1 there exists s′1 with s′ → s′1 and s1 � s′1
(any successor of s is simulated by a successor of s′)

The structure M ′ simulates M (M � M ′) of there exists a simulation

relation � such that for the initial states: ∀s0 ∈ S0 ∃s′0 ∈ S′
0 . s0 � s′0

Prop. : The simulation relation is a preorder over the set of structures

(reflexive and transitive). We choose: s � s′′ ⇔ ∃s′ . s �1 s′ ∧ s′ �2 s′′

Theorem: If M � M ′, then M ′ |= f ⇒ M |= f , for any ACTL* formula

f over AP ′.

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 5
Bisimulation relation

Let M and M ′ be two structures with AP ′ = AP . A relation ≃ ⊆ S ×S′

is a bisimulation relation between M and M ′ iff ∀s, s′ with s ≃ s′:

– L(s) = L(s’)

– ∀s1 with s → s1 there exists s′1 with s′ → s′1 and s1 ≃ s′1
– ∀s′1 with s′ → s′1 there exists s1 with s → s1 and s1 ≃ s′1
(or: ≃ a symmetric simulation relation between M and M ′ and be-

tween M ′ and M)

Structures M and M ′ are bisimilar if there exists a bisimulation rela-

tion ≃ such that for initial states: ∀s0 ∈ S0 ∃s′0 ∈ S′
0 . s0 ≃ s′0, and

∀s′0 ∈ S′
0 ∃s0 ∈ S0 . s0 ≃ s′0.

Prop. : The bisimulation relation is an equivalence relation among

structures

Theorem: If M ≃ M ′ then ∀f ∈ CTL∗, M |= f ⇔ M ′ |= f .

Conversely: Two structures that satisfy the same CTL* (or even CTL)

formulas are bisimilar (equivalently: two structures which are not bisim-

ilar can be distinguished by a CTL formula).

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 6

Example: language inclusion and simulation

a

b b

c d

M1

a

b

c d

M2

Generally: M � M ′ ⇒ L(M)|AP ′ ⊆ L(M ′)

In the figure: L(M1) = L(M2), M1 � M2, M2 6� M1

Equivalent definition (game theory): M � M ′ if any move in M can be

matchd by an equally labelled move in M ′.

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 7

Example: simulation and bisimulation

a

b b

c d c

M1

a

b b

c d d

M2

Generally: M ≃ M ′ ⇒ M � M ′ ∧ M ′ � M

In the figure: M1 � M2, M2 � M1 but M1 6≃ M2

Equivalent definition (as a game): M ≃ M ′ if any choice of a model

and of a move in it can be matched by an equally labelled move in the

other model.

(choice of model done at each step ⇒ symmetry)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 8

Example: bisimulation

a

b b

c c d

M1

a

b b

d d c

M2

M1 ≃ M2

(duplicating nodes does not change branching properties)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 9

Extension to fairness

The relation �F⊆ S × S′ is a fair simulation relation between M and

M ′ (with AP ′ ⊆ AP) iff ∀s �F s′:

– L(s) ∩ AP ′ = L′(s′)

– for any fair path π = ss1s2 . . . in M there exists a fair path

π′ = s′s′1s′2 . . . in M ′ such that ∀i > 0 . si � s′i.

If M �F M ′, then ∀f ∈ ACTL∗, M ′ |=F f ⇒ M |=F f

The relation ≃F⊆ S × S′ is an fair bisimulation relation echitabilǎ be-

tween M and M ′ (with AP ′ = AP) iff ∀s ≃F s′:

– L(s) = L(s’)

– for any fair path π = ss1s2 . . . in M there exists a fair path

π′ = s′s′1s′2 . . . in M ′ such that ∀i > 0 . si ≃ s′i.

– for any fair π′ = s′s′1s′2 . . . in M ′ there exists

a fair path π = ss1s2 . . . in M such that ∀i > 0 . si ≃ s′i.

If M ≃F M ′, then ∀f ∈ CTL∗, M ′ |=F f ⇔ M |=F f

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 10

Algorithms for checking bisimulation

Deterministic system = single initial state; any two successors differ-

ently labeled s → s1 ∧ s → s2 ∧ s1 6= s2 ⇒ L(s1) 6= L(s2)

Simulation:

M, M ′ deterministic: M � M ′ ⇔ L(M) ⊆ L(M ′)

In general, we recursively define: s �0 s′ ⇔ L(s) ∩ AP ′ = L(s′)

s �n+1 s′ ⇔ s �n s′ ∧ ∀s1 . s → s1 ⇒ ∃s′1 . s′ → s′1 ∧ s1 �n s′1
We have �i+1⊆�i ⇒ ∃n . �n=�n+1=� (finite models)

Bisimulation:

M, M ′ deterministic: M ≃ M ′ ⇔ L(M) = L(M ′)

In general, we recursively define: s ≃0 s′ ⇔ L(s) = L(s′)

s ≃n+1 s′ ⇔ s ≃n s′ ∧ ∀s1[s → s1 ⇒ ∃s′1 . s′ → s′1 ∧ s1 ≃n s′1]

∧∀s′1[s
′ → s′1 ⇒ ∃s1 . s → s1 ∧ s1 ≃n s′1]

We have ≃i+1⊆≃i ⇒ ∃n . ≃n=≃n+1=≃ (finite models)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 11

Abstraction: Introduction

Abstraction is the key step in verifying systems of realistic size.

• it means constructing an abstract system (with fewer details)

• and establishing a correspondence between the abstract and the

original system
– exact abstractions: preserve truth value

– conservative abstractions (approximations): correctness of ab-

stract system implies correctness of real system, but not conversely

(counterexample in the abstract system may not exist in the real

one)

The abstract model must be obtained without building the concrete

one

(the latter is often impossible due to size)

– syntactic abstraction techniques

– semantic abstraction techniques (e.g. reduced domain for variables)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 12

Examples of encountered abstractions

Timed abstractions (region automaton; zone graph)

– are finite abstractions of an infinite-state systems

– several states in the concrete system match a state in the abstract

system

A specification is usually an abstraction of the implementation

– the tableau for the LTL formula is an abstraction for a system

that satisfies it

Refinement relations (language inclusion, simulation, etc.) between

two different systems.

Using 1-bit packets in the protocol model of project 1 (data abstrac-

tion)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 13

Cone of influence reduction

Abstraction by removal of variables that do not affect specification.

Let M be a system with variable set V = {v1, v2, · · · , vn} described by

the equations v′i = fi(V).

Let V ′ be the set of variables referenced in the specification.

The cone of influence of V ′ = minimal set C ⊆ V such that

– V ′ ⊆ C

– if vi ∈ C, and fi depends on vj, then vj ∈ C (transitive closure)

We build a new system M ′ eliminating all the variables that do not

appear in C, together with their functional equations.

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 14

Invariance of CTL* specifications

We prove that cone of influence reduction preserves the truth values

of CTL* specifications (defined over variables from C).

Let V = {v1, v2, · · · vn} be a set of boolean variables.

and M = (S, S0, R, L), with:

– S = {0,1}n = set of assignments to V ; S0 ⊆ S

– R =
∧n

i=1(v
′
i = fi(V))

– L(s) = {vi|s(vi) = 1} (variables equal to 1 in s)

Let V be numbered such that C = {v1, · · · , vk}. We define M ′ =

(S′, S′
0, R′, L′):

– S′ = {0,1}k = set of assignments to C

– S0 = {(d′1, · · · , d′k)|∃(d1, · · · dn) ∈ S0 cu d′1 = d1 ∧ . . . ∧ d′k = dk}

– R′ =
∧k

i=1(v
′
i = fi(C))

– L′(s) = {vi|s
′(vi) = 1}

We can show that the concrete model M and the abstract model M ′

are bisimilar .

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 15

Program slicing

A similar but more general notion for programs [Weiser’79]

– inspired by the mental processes performed during debugging

= calculating the program fragment that can affect the computed

values in a given point of interest (slicing criterion) (e.g. variable at

source line)

– usually: an executable program fragment, in source language

– based on program analysis notions of control and data dependence

Types of slicing:

– static or dinamic

– syntactic or semantic criteria

– forward or backward traversal of control graph

– type of control graph dependence: forward/backward; direct/transitive

– on all or some paths through control graph

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 16

Data abstraction

– used for reasoning about circuits with large bit width, or about

programs with complex data structures

– useful if data processing operations are relatively simple (transfer,

small number of arithmetic / logic ops)

Main idea: establishing a correspondence between original domain of

data and a smaller-size domain (usually a few values)

Example: sign abstraction

h(x) =

− if x < 0
0 if x = 0
+ if x > 0

· – 0 +

– + 0 –
0 0 0 0
+ – 0 +

+ – 0 +

– – – ⊤
0 – 0 +
+ ⊤ + +

where ⊤ = {−,0,+}

⇒ we can not always have a precise abstraction

⇒ abstraction domain and function must be carefully chosen

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 17

Generating the abstract system

– for any variable x, we define an abstract variable x̂

– we label states with atomic propositions indicating the abstract value

(for sign abstraction: 3 propositions p−x , p0
x, p+

x for each variable x, in-

dicating x̂ = ” − ”, x̂ = 0, x̂ = ” + ”)

– we collapse all states with same abstract labels

⇒ abstract state space: 2AP , AP = abstract propositions

For an explicity represented model M , we define the abstract (reduced)

model Mr = (Sr, S0
r , Rr, Lr):

– Sr = {Lr(s) | s ∈ S} = abstract labelings of states in S

– S0
r = {s0r ∈ Sr | ∃s0 ∈ S0 . Lr(s0) = s0r} (labelings of initial states).

– Rr(sr, tr) ⇔ ∃s, t ∈ S . R(s, t) ∧ Lr(s) = sr ∧ Lr(t) = tr (transitions

between two abstract states if ∃ transitions between concrete repre-

sentatives)

We can prove: abstract model M ′ simulates original (concrete) model

M

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 18

Abstraction example

3-state traffic light reduced to 2 states

��
��
R -

��
��
G

@
@

@
@I��

��
V

�
�

�
�	

Lr(R) = stop

Lr(G) = stop

Lr(V) = go

⇒

relabeling ��
��
stop -

��
��
stop

@
@

@
@I��

��
go

�
�

�
�	 ⇒

collapsing ��
��
stop

6��
��
go

?

��6

Note: the abstract system may introduce new behaviors (e.g., the

system can stay in the “stop” state forever).

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 19
Exact and approximate abstractions

Consider a system represented implicitly, by predicates for the transi-
tion relation R and the initial states S0.
We assume the same abstraction function for all variables,
h : D → A (D = concrete domain, A = abstract domain)

We must define Ŝ0 and R̂ for the abstract system:
Ŝ0 = ∃x1 . . . ∃xn . S0(x1, · · · , xn) ∧ h(x1) = x̂1 ∧ · · · ∧ h(xn) = x̂n

We similarly define R̂(x̂1, · · · x̂n, x̂1
′, · · · x̂n

′).
⇒ from φ(x1, · · · , xn) we obtain φ̂(x̂1, · · · , x̂n) expressed in abstract vari-
ables

Transforming φ → φ̂ may be a complex operation ⇒ we apply it (like
negation) just to elementary relations between variables (e.g., =, <, >,
etc.).
Define by structural induction an approximate abstraction A:
– A(P(x1, . . . , xn)) = P̂ (x̂1, · · · , x̂n), if P is an elementary relation.
– A(¬P(x1, . . . , xn)) = ¬P̂ (x̂1, · · · , x̂n)
– A(φ1 ∧ φ2) = A(φ1) ∧ A(φ2) – A(φ1 ∨ φ2) = A(φ1) ∨ A(φ2)
– A(∃x φ) = ∃x̂A(φ) – A(∀x φ) = ∀x̂A(φ)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 20
Exact and approximate abstractions (cont’d)

With the definitions so far, one can prove: ∀φ . φ̂ ⇒ A(φ)

In particula, Ŝ0 ⇒ A(S0) and R̂ ⇒ A(R).

(approximation may introduce additional initial states and transitions)

Fie modelul abstract aproximat Ma = (Sr,A(S0),A(R), Lr). Then M �

Ma (the abstract approximated model simulates the original)

If the abstraction function preserves the relations which corresponds

to primitive operations in a program, the abstraction A is exact.

An abstraction function hx defines an equivalence relation between the

concrete values for x which correspond to the same abstract values:

d1 ∼x d2 ⇔ hx(d1) = hx(d2)

If the value of any primitive relation P in the program is the same for

any two pair of equivalent concrete values:

∀d1, · · · dn, d′1, · · · d′n .
∧n

i=1 di ∼xi d′i ⇒ P(d1, · · · , dn) = P(d′1, · · · , d′n)

then M ≃ Ma (the abstract model simulates the concrete model)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 21

Abstract interpretation

A method for defining the abstract semantics of a program that can

be used to analyse the program and produce information about its

runtime behavior. [Cousot & Cousot ’77]

Consists in:

– a concrete domain D and an abstract domain A, linked via a Galois

connection:

– an abstraction function α : D → A

– a concretization function γ : A → P(D)

(associates to each abstract state a set of concrete states)

– a.̂ı. ∀x ∈ P(D) . x ⊆ γ(α(x)) şi ∀a ∈ A . a = α(γ(a))

(abstraction followed by concretization introduces approximation)

concretization followed by abstraction is exact

the majority of abstractions can be formulated in this general frame-

work

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 22

Example: Abstractions modulo an integer

For arithmetic circuits/programs, the abstraction defined by:

h(x) = x mod n, n ∈ Z

Preserves primitive mathematical relations, because

((x mod n) + (y mod n)) mod n = (x + y) mod n, etc.

Additionally (chinese remainder theorem): if n1, · · ·nk relatively prime,

and n = n1 · n2 · . . . · nk, then

x ≡ y (mod n) ⇔
∧k

i=1 x ≡ y (mod ni)

⇒ to verify 16-bit arithmetic, it suffices to verify the implementation

for integers modulo 5, 7, 9, 11, 32 (product > 216)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 23

Symbolic abstractions

To verify the datapaths of a system

(main function: computing and preserving values)

Example: correct transmission from a to b. Initially, for a fixed value:

AG(a = 17 → AX b = 17)

Abstraction function: h(x) =

{

1 if x = 17
0 otherwise

More generally: we introduce the symbolic parameter c:

h(x) =

{

1 if x = c
0 otherwise

⇒ abstract transition relation R̂(â, â′, b̂, b̂′, c)

In a BDD representation, c does not affect the complexity if the system

behavior does not depend on c

Example: pipelined adder with two stages

AG(reg1 = a ∧ reg2 = b → AXAX sum = a + b)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 24

Compozitional reasoning

an application of “divide and conquer” to verification of a system built

from components

– verification of local properties of components

– deriving global properties from component properties

– without constructing a model of the entire system (impractical)

Compositional reasoning: generic term for rules of the form

– M1 |= f1 ∧ M2 |= f2 ⇒ Compose(M1, M2) |= LogicOp(f1, f2)

e.g. parallel composition, and LogicOp = ∧

– M1 ≺ M2 ⇒ CompOp(M1) ≺ CompOp(M2)

ex. ≺ = implementation, refinement; CompOp(·) = ·||M

– M1 ≺ S1 ∧ M2 ≺ S2 ⇒ Compose(M1, M2) ≺ Compose(S1, S2)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 25

CSynchronous composition, simulation and fair ATCL

Let M = (S, S0, AP, L, R, F) and M ′ = (S′, S′
0, AP ′, L′, R′, F ′).

Define parallel synchronous composition M ′′ = M ||M ′:

– S′′ = {(s, s′) ∈ S × S′ | L(s) ∩ AP ′ = L′(s′) ∩ AP}

– S′′
0 = (S0 × S′

0) ∩ S′′

– AP ′′ = AP ∪ AP ′

– L′′(s, s′) = L(s) ∪ L′(s′)

– R′′((s, s′)(t, t′)) = R(s, t) ∧ R′(s′, t′)

– F ′′ = {(P × S′) ∩ S′′ | P ∈ F} ∪ {(S × P ′) ∩ S′′ | P ′ ∈ F ′}

We use ACTL with fairness: for any ACTL formula f we can construct

a tableau Tf , and we have M |=F f ⇔ M �F Tf

⇒ we can reason uniformly with formulas and models (tableaux)

(a) for any M şi M ′, M ||M ′ �F M .

(b) for any M , M ′ şi M ′′, M �F M ′ ⇒ M ||M ′′ �F M ′||M ′′

(c) for any M , M �F M ||M

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 26
Non-circular assume-guarantee

Folosim notaţia 〈f〉M〈g〉:

Orice sistem care satisface prezumţia f şi conţine M garanteazǎ g.

(f , g sunt fie formule, fie modele)

O structurǎ tipicǎ de raţionament:

〈true〉M〈A〉 ∧ 〈A〉M ′〈g〉 ∧ 〈g〉M〈f〉 ⇒ 〈true〉M ||M ′〈f〉

Instanţiere ı̂n termeni concreţi:

M = un transmiţǎtor complex

A = un model simplu de transmiţǎtor periodic

〈true〉M〈A〉: M funcţioneazǎ la fel ca şi A

M ′ = un receptor

g = “mesajele sunt preluate la timp”

〈A〉M ′〈g〉 = M ′ compus cu A preia mesajele la timp

f = “nu avem buffer overflow”

〈g〉M〈f〉 = dacǎ M e ı̂ntr-un sistem care preia mesajele la timp,

nu avem buffer overflow.

⇒ ı̂n sistemul M ||M ′ nu apare buffer overflow.

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 27

Justificarea raţionamentului

(1) M �F A ipotezǎ
(2) M ||M ′ �F A||M ′ (1) şi compoziţionalitate (a)
(3) A||M ′ |=F g ipotezǎ
(4) A||M ′ �F Tg (3) şi prop. tabloului ACTL
(5) M ||M ′ �F Tg (2), (4) şi tranzitivitatea �F
(6) M ||M ||M ′ �F Tg||M (5) şi compoziţionalitate (b)
(7) Tg||M |=F f ipotezǎ
(8) M ||M ||M ′ |=F f (6), (7) şi �F ⇒ |=F
(9) M �F M ||M compoziţionalitate (c)
(10) M ||M ′ �F M ||M ||M ′ (9) şi compoziţionalitate (b)
(11) M ||M ′ |=F f (8), (10) şi �F ⇒ |=F

Demonstratoare de teoreme pot mecaniza descompunerea

ı̂n raţionamente pe componente şi asigura validitatea deducţiei.

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 28

Circular assume-guarantee

Often, compositional rules are not strong enough.

Consider implementations Mi and specifications Si, i = 1,2.

To prove M1||M2 ≺ S1||S2 it would suffice if M1 ≺ S1 and M2 ≺ S2.

But frequently, these individual relations are not satisfied:

– components M1 and M2 are not independently designed

– each one relies on functioning in an environment provided by the

other one

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 29

Exemplu de dependenţe

Modelǎm algoritmul obişnuit de ı̂mpǎrţire a douǎ numere, n ÷ d,

ı̂n baza b, cu douǎ componente:

MQ(in : r, d; out : q) calculeazǎ urmǎtoarea cifrǎ din cât: q = ⌊r/d⌋

MR(in : n, d, q; out : r) actualizeazǎ restul: r′ = (r−q∗d)∗b+next digit(n)

Dorim ca MQ||MR sǎ satisfacǎ ı̂mpreunǎ urmǎtorii invarianţi:

• SQ: 0 ≤ q < b ∧ q ∗ d ≤ r < (q + 1) ∗ d

• SR: 0 ≤ r < b ∗ d

Totuşi, individual nu avem nici MQ |= SQ şi nici MR |= SR:

funcţionarea corectǎ a fiecǎrui modul depinde de celǎlalt

Dar avem SQ ⇒ MR |= SR şi SR ⇒ MQ |= SQ.

(un modul funcţioneazǎ corect ı̂n mediul dat de specificarea celuilalt)

⇒ Putem deduce de aici cǎ MQ||MR |= SQ ∧ SR ?

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 30

Circular assume-guarantee rules

Studied in various contexts [Chandi & Misra’81, Abadi & Lamport’93]

We refer to Reactive Modules [Alur & Henzinger ’95]:

– modules with input and putput variables, and transition relation

– dependence relation ≺⊆ (Vin ∪ Vout) × Vout

– x ≺ y: y depends combinaţionally on x;

otherwise, only the next value of y can depend sequentially on x

– synchronous parallel composition M1||M2 is possible

if Vout(M1) ∩ Vout(M2) = ∅ and ≺M1
∪ ≺M2

is an acyclic relation

We define the refinement (implementation) relation M ≤ M ′ iff

V (M ′) ⊆ V (M), Vout(M
′) ⊆ Vout(M), ≺M⊇≺′

M , L(M)|V (M ′) ⊆ L(M ′)

(first 3 conditions: if P can function in a context, so can Q)

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 31

Circular assume-guarantee rules (cont’d)

For reactive modules:

M1||S2 ≤ S1||S2
S1||M2 ≤ S1||S2

M1||M2 ≤ S1||S2
(assuming all compositions well defined)

Advantage: although there are two relations to prove, each is simpler

than the original one.

– specification description Si is much simpler than the implementation

Mi

– need not compose two different implementations (often impossible)

Rule with temporal induction [McMillan’97]

valid for invariants (safety properties)

– if P1 ∧ Q1 true at 0,1, · · · , t ⇒ Q2 true at t + 1

– if P2 ∧ Q2 true at 0,1, · · · , t ⇒ Q1 true at t + orice

– then for any t, P1 ∧ P2 ⇒ Q1 ∧ Q2

Formal verification. Lecture 7 Marius Minea

Comparing models. Abstraction. Compositional reasoning 32

Compositionality and refinement

[Henzinger’01] - study of the theory of interfaces

For a refinement relation ≤ and a composition relation ||, we wish:

If M1 ≤ S1 and M2 ≤ S2, then M1||M2 ≤ S1||S2

Generally, insufficient – components may be incompatible.

⇒ two variants:

• If M1 ≤ S1 and M2 ≤ S2, and M1||M2 is defined,

then S1||S2 is defined and M1||M2 ≤ S1||S2

– formalism focused on components

– allows independent verification of components (bottom-up)

• If M1 ≤ S1 and M2 ≤ S2, and S1||S2 is defined,

then M1||M2 is defined and M1||M2 ≤ S1||S2

– formalism focused on interfaces

– allows independent implementation of interfaces (top-down)

Formal verification. Lecture 7 Marius Minea

