
Program semantics, analysis and verification 1

Program semantics, analysis and verification

December 8, 2005

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 2
Program semantics

[Nielsen & Nielsen, Semantics with Applications, Wiley 1992, 1999]
Semantics = describing the meaning (behavior of programs).
formally: express the meaning in terms of a mathematical model

operational semantics: describes how the computation is executed
(effects of a statement on the program state)
– natural (big-step) operational semantics: overall execution
– structural (small-step) operational semantics: effect composed from
individual statements

denotational semantics: describes effect of program construct
typically as function; not how execution is done
– direct style: meaning of standalone construct
– continuation style: meaning if followed by a given continuation

axiomatic semantics: assertions about effect of executing the program
(can focus on some properties of interest)
– partial correctness: what is true if program terminates
– total correctness: also expresses when program terminates

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 3
History of program verification

– first practical successes of formal verification were for hardware
– but started by formalizing programming language semantics

Robert W. Floyd. Assigning Meanings to Programs (1967)
”an adequate basis for formal definitions of the meanings of programs
[...] in such a way that a rigorous standard is established for proofs”
”If the initial values of the program variables satisfy the relation R1,
the final values on completion will satisfy the relation R2.”
– method: annotating a program (or flow graph) with assertions
– introduces the notion of verification condition: a formula Vc(P ;Q)
such that if P is true before executing c, then Q is true upon exit
and strongest verifiable consequent for a program + initial condition
– very general approach: assertions expressed in first order logic
– develops general rules for combining verification conditions
and specific rules for different instruction types
– explicitly introduces invariants for reasoning about loops
– handles termination using a positive decreasing measure

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 4

The works of Hoare

C.A.R. Hoare. An Axiomatic Basis for Computer Programming (1969)

– like Floyd, handles preconditions and postconditions for executing an

instruction, but the notion of Hoare triple better displays the relation

between the statement and the two assertions

– works with source programs, not flow graphs

– Notation: partial correctness {P} S {Q}
If S is executed in a state that satisfies P and it terminates,

the resulting state satisfies Q.

– Later: similar reasoning for total correctness [P ] S [Q]

If S is executed in a state that satisfies P , then it terminates

and the resulting state satisfies Q.

Rigorous application: C.A.R. Hoare. Proof of a Program: FIND (1971)

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 5

Hoare’s axioms (rules)

– defined for each statement type individually

by combining them, we can reason about entire programs

Assignment:
{Q[x/E]} x := E {Q}

where Q[x/E] is the substitution of x with E in Q

Example: {x = y − 2} x := x+ 2 {x = y} (in x = y, substitute x with

the assigned expression, x+ 2 and obtain x+ 2 = y, thus x = y − 2)

Writing the rule “backward” (P as function of Q) simplifies it.

Sequencing:
{P} S1 {Q} {Q} S2 {R}

{P} S1;S2 {R}

Decision:
{P ∧ E} S1 {Q} {P ∧ ¬E} S2 {Q}
{P} if E then S1 else S2 {Q}

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 6
Hoare rules

While loop: is key in reasoning about programs

– must find an invariant I = a property which stays true

before/after each loop iteration

– if loop is entered (E), the invariant is maintained after loop body S

– if loop not entered (¬E), imvariant implies postcondition Q

{I ∧ E} S {I} I ∧ ¬E ⇒ Q

{I} while E do S {Q}

while (lo < hi) { /* binary search; I: lo <= n && n <= hi */

m = (lo + hi) / 2;

if (n > m) /* both cases maintain lo<=n && n<=hi */

lo = m+1; /* n > m => n >= m+1 => n >= lo */

else hi = m; /* !(n < m) => n <= m => n <= hi */

} /* I stays true */

n = lo; /* lo<=n && n<=hi && !(lo<hi) => lo==n && n==hi */

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 7

Hoare rules with pointers/aliasing

Consider {P} ∗ x = 2 {v+ ∗x = 4}
What is the precondition P ? Correct answer: v = 2 ∨ x = &v.

But using the simple rule (v+ ∗x = 4)[∗x/2] misses second case.

⇒ we must model memory. m = memory, a = address, d = data.

Consider functions rd(m,a) return d and wr(m,a, d) return m′

We have the rule: rd(wr(m,a1, d), a2) =

{
d if a2 = a1
rd(m,a2) if a2 6= a1

We must deduce a property of memory m from the relation:

rd(wr(m,x,2),&v) + rd(wr(m,x,2), x) = 4

rd(wr(m,x,2),&v) + 2 = 4

rd(wr(m,x,2),&v) = 2

x = &v ∧ 2 = 2 ∨ x 6= &v ∧ rd(m,&v) = 2

x = &v ∨ v = 2

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 8

Dijkstra’s weakest precondition operator

E.W.Dijkstra. Guarded Commands, Nondeterminacy and Formal

Derivation of Programs (1975)

– for a given statement S and postcondition Q there can be several

preconditions P such that {P} S {Q} or [P ] S [Q].

– Dijkstra calculates a necessary and sufficient precondition wp(S,Q)

for successful termination of S with postcondition Q.

– necessary (weakest): if [P ] S [Q] then P ⇒ wp(S,Q)

– wp is a predicate transformer (transforms post- into precondition)

– allows the definition of a calculus with such transformers

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 9

Dijkstra’s preconditions (cont.)

Assignment: wp(x := E,Q) = Q[x/E] (see Hoare’s rule)

Sequencing: wp(S1;S2, Q) = wp(S1, wp(S2, Q))

Conditional:

wp(if E then S1 else S2, Q) = (E ⇒ wp(S1, Q)) ∧ (¬E ⇒ wp(S2, Q))

For iteration, we need a recursive computation

Define wpk, assuming loop terminates in at most k iterations:

wp0(while E do S,Q) = ¬E ⇒ Q (loop not entered)

wpk+1(whileE doS,Q)) = (E⇒wp(S,wpk(whileE doS,Q))) ∧ (¬E⇒Q)

(≤ k+ 1 iterations ⇔ 1 iteration followed by ≤ k, or 0 iterations;

equivalent with decomposing the first while iteration into an if)

⇒ can be written as a fixpoint formula

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 10

Finding loop invariants

We know P before the loop, we wish to find Q after execution.

How do we establish an invariant I of the loop in order to prove Q?

I must satisfy the following conditions:

– P ⇒ I (I sufficiently weak to hold initially)

– {I ∧ E} S {I} (I is an invariant)

– I ∧ ¬E ⇒ Q (I sufficiently strong to be useful)

Determining loop invariants is difficult:

Trivial example:

{x ≤ 0} while x < 9 do x← x+ 1 {x < 10}
x < 10 is an invariant that can be successfully established

(also x < n with n ≥ 10, but not as useful)

Usually: iterative calculation (fixpoint); sometimes needs invariant

strengthening

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 11
Predicate abstraction

Using Floyd-Hoare-style reasoning, we can express properties as pred-
icates over the state variables of the program
– same as e.g., atomic prepositions were defined in Spin
– sample predicates: x > 0, lock = 1, x+ 1 < y

Predicate abstraction [Graf & Säıdi ’97]: method for constructing an ab-
stract state space depending only on the values of given predicates.

We seek: well chosen predicates so the specification can be verified
over abstract state space, without exploring concrete state space.

Operations needed to explore the abstract state space of the program:
– concretisation: calculating the concrete states (in the initial model)
represented by the predicates in the abstract state
– computing successors / predecessors of these states
(using the concrete semantics of program statements
– abstration of concrete states, expressed using predicates
⇒ We need a (possibly approximate) method for backward/forward
exploration in the abstract state space.

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 12

Exploring the abstract state space

General framework:

– symbolic approach, with state sets represented as formulas

post(r, t) = {s′ | ∃s ∈ r . s t→ s′}: successor of region (state set) r

– we seek the abstract operator posta(r, t) = α(postc(γ(r), t))

– in general, this computation is infeasible/expensive in practice

(particularly the abstractisation operation α)

⇒ abstractions with different kinds of approximation

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 13

Variant 1: approximation with monomials [Graf-Säıdi]

– each predicate represented in disjunctive normal form

(as disjunctions of monomials φ)

monomial = conjunction (product) of predicates pi or their negation

¬pi
– successor posta(ψ, t) for the transition (statement) t also approxi-

mated by a monomial

⇒ we determine for each predicate if the monomial contains pi or ¬pi
(or none)

⇒ we determine for each predicate pi if posta(ψ, t) implies pi or ¬pi,
i.e., if ψ ⇒ wp(pi, t) or ψ ⇒ wp(¬pi, t)

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 14

Variant 2: BDD-based full decomposition [Das-Dill-Park]

– Approximating with monomials is highly restrictive

⇒ can lead to very coarse approximations

– However, more precise computations can lead to exponential number

of calls to decision procedures ⇒ infeasible

– split region φ recursively in fragments that can lead to states that

satisfy pi, or ¬pi, respectively

posta(φ, t) = post1(φ, t), where

postk(φ, t) = pk∧postk+1(φ∧prec(γ(pk), t), t)∨¬pk∧postk+1(φ∧¬prec(γ(pk), t), t)
for 1 ≤ k ≤ n, where prec(r, t) = {s | ∃s′ ∈ r . s t→ s′}
şi postn+1(φ, t) is true if φ is satisfiable, and false otherwise.

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 15

Variant 3: constructing an abstract program [Ball-Rajamani]

– Previous variants require computing posta dynamically for any com-

bination of predicates that appear in exploration

– this number is worst-case exponential

– Solutione: separate effects of program on each predicate

⇒ compute once for each statement its effect on predicate pi
⇒ produce an abstract boolean program in which every statement has

as effect the assignment of every predicate with a new value:

– true, for predicate combinations that imply wp(γ(pi), t)

– false, for predicate combinations that imply wp(γ(¬pi), t)
– unknown, otherwise

– also called cartesian abstraction (independent for each predicate)

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 16

Predicate abstraction in software verification practice

Example: SLAM project [Microsoft Research]

(Software (Specifications), Languages, Analysis and Model checking)

Goal: verification of safety properties (invariants)

example: a program observes API usage rules

(such as: calls to lock() and unlock() alternate

– focused mainly on detecting interface errors

– applied to device drivers for Windows NT/XP

Characteristics:

– needs no user annotation of program

(only specifying rules as automata monitoring correct behavior)

– automated counterexample-guided abstraction refinement

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 17
Counterexample-guided abstraction refinement

– abstract model is program control flow graph augmented with cho-
sen set of boolean predicates over program variables
(initial set of predicates may be empty)
– this finite representation is model checked to find violation of speci-
fication
– if the model is correct, the program is correct (conservative abstrac-
tion)
– if a counterexample is found, it is explored symbolically in the con-
crete program, retaining (cor)relations among variables
– if the counterexample is feasible, an error has been found
– counterexample may be infeasible, if the conjunction of the condi-
tions needed to traverse the required branches is unsatisfiable (false)
⇒ counterexample due to coarse abstraction
– unsatisfiable core of formula suggests predicates to refine abstraction
– procedure is repeated with new (augmented) set of predicates

This is a semialgorithm; termination is not guaranteed.

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 18
Sample program

do { /* fragment of device driver, [Ball & Rajamani ’01] */

KeAcquireSpinLock(&devExt->writeListLock);

nPacketsOld = nPackets;

request = devExt->WriteListHeadVa;

if(request && request->status) {
devExt->WriteListHeadVa = request->Next;

KeReleaseSpinLock(&devExt->writeListLock);

irp = request->irp;

if (request->status > 0) {
irp->IoStatus.Status = STATUS SUCCESS;

irp->IoStatus.Information = request->Status;

} else {
irp->IoStatus.Status = STATUS UNSUCCESSFUL;

irp->IoStatus.Information = request->Status;

}
SmartDevFreeBlock(request);

IoCompleteRequest(irp, IO NO INCREMENT);

nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock(&devExt->writeListLock);

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 19

Specifying properties

state {
enum { Unlocked=0, Locked=1 }

state = Unlocked;

}

KeAcquireSpinLock.return {
if (state == Locked) abort;

else state = Locked;

}

KeReleaseSpinLock.return {
if (state == Unlocked) abort;

else state = Unlocked;

}

Specification translated into C; original program is instrumented

(original program correct ⇔ instrumented program cannot reach error)

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 20

Generating the boolean program

– start from the predicates in the specification

– use nondeterministic if where truth value unknown

– remove irrelevant instructions (skip)

do {
A: KeAcquireSpinLock return();

skip;

if(*) {
B: KeReleaseSpinLock return();

if (*) {
skip;

} else {
skip;

}
}
} while (*);

C: KeReleaseSpinLock return();

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 21

Model checking the boolean program

Bebop: calculates reached states for every statement of boolean pro-

gram, using an interprocedural dataflow analyis algorithm

state = assignment to variables in scope

set of states = boolean function, represented as BDD

computation with sets of states: captures correlation between vari-

ables

– does not expand procedures, exploits locality of variables

– uses an explicit control flow graph

– complexity: linear in size of CFG; exponential in number of vars in

scope

For the given example: model checker finds that A: KeAcquireSpinLock()

could be called twice successively (an error)

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 22

Contraexample and generation of new predicates

A theorem prover is used to check if the counterexample in the abstract

program is really a counterexample in concrete program

Evaluates program statements using symbolic constants until it finds

that the assignment at the end of the path is feasible, or finds an

inconsistency along the way.

For an inconsistency, a minimal unsatisfiable formula is found and the

corresponding predicates are generated.

In the example nPacketsOld = nPackets and nPacketsOld != nPackets

decision procedures are incomplete ⇒ might return “don’t know”

– the boolean program is then regenerated

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 23

The second boolean program

do {
A: KeAcquireSpinLock return();

b = T; /* b == (nPackets == nPacketsOld) */

if(*) {
B: KeReleaseSpinLock return();

if (*) {
skip;

} else {
skip;

}
b := choose(F, b); /* choose(p1, p2) == p1 ? T : p2 ? F : nondet */

}
} while (!b);

C: KeReleaseSpinLock return();

The second, refined abstraction is sufficient to prove correctness.

Formal verification. Lecture 8 Marius Minea



Program semantics, analysis and verification 24

Predicate abstraction in practice

– at present: programs of about 10kloc and tens/hundreds boolean

variables can be analyzed in (tens of) minutes

– with optimisations, 100kloc may be reached

Available verifiers for C: BLAST (UC Berkeley), MAGIC (CMU)

Optimisation: lazy abstraction [Henzinger, Jhala, Majumdar, Sutre ’02]

– does not refine abstraction at each iteration

– current abstraction is refined with new predicates only in code frag-

ments where this is necessary (on-the-fly)

⇒ preserves locality (e.g., different abstractions for then/else branches)

Formal verification. Lecture 8 Marius Minea


