
Static analysis

December 15, 2005

Formal verification. Lecture 9 Marius Minea

Static analysis 2

Program analysis techniques

– Dataflow analysis

mainly techniques originating in compiler construction

emphasizes tradeoff betweeen precision and efficiency

– Constraint-based analysis

general framework for solving analysis problems by representing them

as constraint relations between sets: generic and efficient algorithms

– Abstract interpretation

simplifies program by defining a semantics that considers only those

aspects relevant for the desired property

– Type systems

by defining an appropriate type systems, many properties can be con-

verted to type checking or type inference problems

Formal verification. Lecture 9 Marius Minea

Static analysis 3

Dataflow analysis

Techniques originating in the compiler domain

– used for code generation (e.g. register allocation)

– and code optimization (constant propagation, lifting common subex-

pressions, detecting unused variables, etc.)

Techniques have evolved and have been unified into a general frame-

work applicable also to other code analysis problems.

Basic approach:

– construct the program control flow graph (CFG)

– observe how properties of interest change during program execution

(upon traversing the nodes / edges of the CFG)

Formal verification. Lecture 9 Marius Minea

Static analysis 4

Program control flow graph

A representation in which:

– nodes are statements

– edges indicate sequencing of statements

⇒ we can have nodes with:

– a single successor (straight-line code, e.g. assignments)

– several successors (branch statements)

– several predecessors (join after branching)

Alternative representation:

– nodes are program points

– edges are statements together with their effects

Formal verification. Lecture 9 Marius Minea

Static analysis 5

Notations

G = (N, E) : control flow graph (N : nodes; E : edges)

s : one program statement (node in the control flow graph)

entry, exit : program entry and exit points

in(s) : set of edges that have s as destination

out(s) : set of edges that have s as source

src(e), dest(e) : source and destination of edge e

pred(s) : set of predecessors of statement s

succ(s) : set of successors of statement s

With these notions, we write dataflow equations that describe how the

analyzed values (dataflow facts) change from one statement to to the

next

we use subscripts in and out for the value analyzed at entry and exit

from statemens s.

Formal verification. Lecture 9 Marius Minea

Static analysis 6

Example: Reaching definitions

What are all definitions (assignments) that can reach the current pro-

gram point? (before their assigned values are overwritten)

Elements of interest are pairs: (variable, source line of definition)

For each statement (identified by its label l) we are interested in the

value before and after its execution: RDin(s) and RDout(s)

– the initial node in the graph is not reached by any definition

RDout(entry) = {(v, ?) | v ∈ V }

– an assignment l : v ← e erases all previous definitions for variable v

(but not for other variables) and introduces the current line (definition)

RDout(l : v ← e) = (RDin(s) \ {(v, s′)}) ∪ {(v, l)}

– definitions on entry of a statement are the union of definitions at

exist of the predecessor instructions:

RDin(s) =
⋃

s′∈pred(s) RDout(s
′)

Formal verification. Lecture 9 Marius Minea



Static analysis 7

Example: Live variables analysis

At each program point, what are the variables whose value will be used

on at least one of the possible program paths from this point ?

(useful in compilers for register allocation)

Transfer function: LVin(s) = (LVout(s) \write(s)) ∪ read(s)

(a variable is live before s if it is read by s, or it is live after s without

being written by s) ⇒ direction of analysis is backward

Operation for combining values/joining paths (meet):

LV eout(s) =

{

∅ if succ(s) = ∅
⋃

s′∈succ(s) LV ein(s′) otherwise

⇒ combination done by union (may, on at least one path)

Formal verification. Lecture 9 Marius Minea

Static analysis 8

Example: Available expressions

At each program point, what are the expressions whose values has

been previously computed, without it having changed, on all paths to

this point?

(if value is stored in a register, it need not be recomputed) Transfer

function: AEout(s) = (AEin(s) \ {e | V (e) ∩write(s) 6= ∅})

∪{e ∈ Subexp(s) | V (e) ∩write(s) = ∅}

(expressions on entry to s which have no variables modified by s,

and any expressions computed at s without changes in their variables)

Combination operation (meet):

AEin(s) =

{

∅ if pred(s) = ∅
⋂

s′∈pred(s) AEout(s
′) otherwise

⇒ combination done by intersection (must, on all paths);

analysis is before

Formal verification. Lecture 9 Marius Minea

Static analysis 9

Example: Very busy expressions

What are the expressions which must be evaluated on any path from

the current program point before the value of an appearing variable is

modified ?

⇒ evaluation can be lifted to current point, before any branches

– a backward analysis, universaly quantified (must)

V BEin(s) = (V BEout(s) \ {e | V (e) ∩write(s) 6= ∅}) ∪ Subexp(s)

V BEout(s) =

{

∅ if succ(s) = ∅
⋂

s′∈succ(s) V BEin(s′) otherwise

Formal verification. Lecture 9 Marius Minea

Static analysis 10

Analyzed properties (dataflow facts)

Concretely: We might wish to analyze several properties, such as:

– value of a variable at a program point

– or the interval of values for a variable

– of sets of variables (live), expressions (available, very busy),

possible definitions for a variable (reaching definitions), etc.

Abstractly: a set D of values for a property (dataflow facts)

Restriction: D is a finite set

Formal verification. Lecture 9 Marius Minea

Static analysis 11

Partially ordered sets

Concretely :

– we have associated with program points sets of values for the ana-

lyzed property

– we have iteratively recomputed the corresponding sets, by union or

intersection operations, enlarging or restricting the set of values

What are the essential properties that allow this kind of calculation ?

Abstract: O partially ordered set (L,⊑) is a set equipped with apartial

order relation ⊑⊆ L× L, i,e., a relation which is:

– reflexive, x ⊑ x for any x ∈ L

– transitive, x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z, for any x, y, z ∈ L

– antisymmetric: x ⊑ y ∧ y ⊑ x⇒ x = y, for any x, y ∈ L

Example: powerset (P(D),⊆) or (P(D),⊇)

Formal verification. Lecture 9 Marius Minea

Static analysis 12

Lattices

(complete) lattice = a partially ordered set in which any finite subset

has a least upper bound and a greatest lower bound.

l0 is an upper bound of Y ⊆ L if ∀l ∈ Y we have l ⊑ l0
l0 is a lower bound of Y ⊆ L if ∀l ∈ Y we have l0 ⊑ l

Denote:
⊔

Y : the least upper bound of the set Y ⊆ L

Y : the greatest lower bound Y ⊆ L

şi ⊥ =
⊔

∅ = L ⊤ = ∅ =
⊔

L

We define the operations

meet : x ⊓ y = {x, y}

join : x ⊔ y =
⊔

{x, y}

(for powerset: intersection, union)

Formal verification. Lecture 9 Marius Minea



Static analysis 13

Lattices (cont.)

The operations ⊓ (meet) and ⊔ (join) are:

– commutative

– associative

– x ⊓ ⊥ = ⊥ and x ⊔ ⊤ = ⊤, for any x.

A distributive lattice: one in which the operators ⊓ and ⊔ are mutually

distributive:

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)

Formal verification. Lecture 9 Marius Minea

Static analysis 14
Transfer functions

Concretely : statements determine changes in the program state. The

value of a variable after a statement is a function of its value at the

beginning of the statement.

Abstractly : Each statement s has associated a transfer function F(s) :

L → L that determines the way in which the value of the property at

the beginning of the statment is modified by the statement:

Propout(s) = F(s)(Propin(s)) (forward analyses),

or conversely (backward analyses)

Restriction: we require transfer functions to be monotone

x ⊑ y ⇒ f(x) ⊑ f(y)

(if we know more about the argument, we should know more about

the result)

Particular case: bitvector frameworks: the lattice is a powerset P(D),

transfer functions are monotone and of the form:

F(s)(v) = (v \ kill(s)) ⊔ gen(s)

(v = dataflow fact, gen/kill(s) = information generated/deleted in s)

Formal verification. Lecture 9 Marius Minea

Static analysis 15

Dataflow equations

Example for forward analyses:

Propout(s) = F(s)(Propin(s))

Propin(s) = s′∈pred(s) Propout(s
′)

where we denote by the effect of combining information (meet) on

several paths (could be ∩ or ∪)

Initially, we know the value Propout(entry).

For backwards analyses, the roles of in and out change, and the value

of Propin(exit) is known.

Formal verification. Lecture 9 Marius Minea

Static analysis 16

Solution: worklist algorithm

To compute the solution for the above equation system, we use an

iterative algorithm which propagates changes in the direction of the

analysis.

foreach s ∈ N do Propin(s) = ⊤ /* no info */

Propin(entry) = init // depending of the analysis

W = {entry}

while W 6= ∅

choose s ∈W

W = W \ {s}

Propin(s) = s′∈pred(s) Propout(s
′)

Propout(s) = F(s)(Propin(s))

if change then

forall s′ ∈ succ(s) do W = W ∪ {s′}

Formal verification. Lecture 9 Marius Minea

Static analysis 17

Termination: fixpoint condition

Termination of the analysis is guaranteed if the transfer function is

monotone: x ⊑ y ⇒ f(x) ⊑ f(y), which implies that computed proper-

ties change in a monotone way.

Def: Fixpoint for a function f : a value x for which f(x) = x

Tarski’s Theorem guarantees that a monotone function over a lattice

has a minimal and a maximal fixpoint.

The worklist algorithm computes the minimal fixpoint for the given

system of transfer functions.

Formal verification. Lecture 9 Marius Minea

Static analysis 18
Meet over all paths

We wish to compute the combined effect of program statements:

for the sequence of instructions p = s1s2 . . . sn we define

F(p) = F(sn) ◦ . . . ◦ F(s2) ◦ F(s1)

and we wish to compute:

p∈Path(Prog) Fp(entry)

But the worklist algorithm combines the effects at each meet before

computing further. Since functions are monotone, we have:

f(x ⊔ y) ⊒ f(x) ⊔ f(y)

thus the analysis loses precision

For distributive transfer functions we have equality: f(x) ∪ f(y) =

f(x ∪ y)

It can be shown that the iterative worklist algorithm (the fixpoint so-

lution) is equivalent with computing the solution by combining values

over all possible paths (meet over all paths).

⇒ oombining the individual execution paths does not lose information

The examples given so far (live variables, etc.) are distributive

Formal verification. Lecture 9 Marius Minea



Static analysis 19

Classification of analyses

– forward or backward

– must or may

– control flow sensitive or control flow insensitive:

do we need to consider the order of statements in the program ?

– no: what variables are used/changed, what functions are

called, etc.

– yes: properties effectively depending on values computed by

the program

– context dependent or context independent

for programs with procedures: is the analysis of each procedure

specialized depending on its call point, or is a single analysis (procedure

summary) employed ?

Formal verification. Lecture 9 Marius Minea


