
Verification of programs in practice

December 15, 2005

– Verification of Java programs (Pathfinder, ESC/Java, Bandera)

– Proof Carrying Code

– Combinations with static analysis

Formal verification. Supplement. Marius Minea



Verification of programs in practice 2

Java PathFinder (NASA Ames)

early effort to verify code written in usual programming languages

Java PathFinder 1.0: translation from Java to PROMELA (Spin)

– language similarities: treatment of dynamic object creation, threads

– missing aspects (floating point); Spin needs complete model/source

Java PathFinder 2.0: standalone verifier, written in Java

[G. Brat, K. Havelund, S. Park, W. Visser ’00]

General architecture:

explicit state model checking

– usual technique for representing large states (structures):

each structural value stored only once and encoded as integer

custom Java virtual machine for model checking, with

– exploration algorithms (issue forward/backward steps in own JVM)

– nondeterministic environment using special methods captured by

JVM

Formal verification. Supplement. Marius Minea



Verification of programs in practice 3

Java PathFinder (cont.)

Verification techniques:

Static analysis

– for constructing program abstractions (by slicing)

– for identifying partial order reduction conditions

using the SVC (Stanford Validity Checker) theorem prover

Runtime analysis, for detecting potential error conditions:

– race conditions in access to shared variables

– accessing semaphores in different order (potential deadlock)

Performance and verified systems

– coded in Java, 10x slower than Spin; speed: thousands of states/sec.

– verified a control agent for state space operation

– a fragment of a distributed operating system (14 classes, 1 kloc)

Now a SourceForge project: http://javapathfinder.sourceforge.net

Formal verification. Supplement. Marius Minea



Verification of programs in practice 4

Abstraction in Java PathFinder

Source-level transformations generate another Java program that op-

erates on abstract predicates.

Abstractions is expressed as special annotation class Abstract;

Abstract.remove(x) // abstracts away x

Abstract.addBoolean("x0", x == 0) // adds predicate x == 0

One can also abstract away predicates over several classes:

Abstract.addBoolean("xGTy", A.x > B.y);

– generates a predicate for each object pair instantiated from classes

A and B

– possible explosion in the number of needed predicates

Formal verification. Supplement. Marius Minea



Verification of programs in practice 5

ESC/Java (DEC/Compaq SRC)

ESC = Extended Static Checking; initially for Modula 3, then Java

– not a model checker, but a static analyzer

– can detect errors such as null references, out-of-bound indices

– for more complex properties annotations are used

(invariants, preconditions, postconditions, null/non-null conditions)

– allows modular verification, separately for each method

– verification done using a theorem prover (Simplify)

– modules with unavailable source supplanted by specification files

Similar static analyzers exist for C (lint, evolved into splint)

Formal verification. Supplement. Marius Minea



Verification of programs in practice 6

Bandera [Kansas State U.]

A modular verifier for Java programs

– o front-end for program simplification (program slicing)

– a library of frequently-used abstractions

(the user specifies for each variable the desired abstraction)

– ability to restrict the model to a small number of module instances

– a generator for a finite model in a generic format

(guarded command language, easily translated to other specifications)

– interfaces with usual verifiers (SMV, Spin, PVS theorem prover)

– a specification language, and support for formulas based on patterns

Formal verification. Supplement. Marius Minea



Verification of programs in practice 7

Proof Carrying Code

[Necula & Lee ’96, Necula ’97]

– A method for safe execution of untrusted code, e.g. net applets

– code consumer defines a set of safety rules

– code producer delivers the code coupled with a formal proof that it

satisfies the safety rules

– consumer uses a simple proof checker to establish validity of code

and received proof

Key idea: checking a proof is a simple mechanical task (simple checker;

small, verifiable trusted code base) while generating a proof is hard

(burden falls on code producer)

Formal verification. Supplement. Marius Minea



Verification of programs in practice 8

PCC: Structure of system

Producer

– certifying compiler, generates native code with annotations (e.g.

invariants)

– verification condition generator (VCGen)

VC = predicate whose validity guarantees safe execution

– proof generator (starting from VCGen)

Consumer

– a proof checker: validates correspondence between received code

and proof

(possibly assisted by a VCGen identical to producer’s)

Formal verification. Supplement. Marius Minea



Verification of programs in practice 9

PCC: verification condition generation

– The notion of VC: linked to the rules for program correctness based

on preconditions and postconditions established by Floyd (1967)

– a VC is not necessarily the weakest precondition

(can be simpler, easier to express and prove)

for (i = 0; i < length(a); i++) s += a[i];

VC built from predicates of the form

s : int ∧ l ≥ 0 premise

i ≥ l→ s : int postcondition

i < l → saferd(mem, a + i) ∧ i + 1 ≤ l ∧ s + rd(mem, a + i) : int

invariant

Formal verification. Supplement. Marius Minea



Verification of programs in practice 10

PCC: advantages

– Validating a proof is much easier than finding it

⇒ simple for the consumer, who need only trust proof checker

– Method is tamper-proof: no change in code and/or proof can go

undetected (if a changed program checks, it is still safe)

– Verification is performed once, statically; allows subsequent safe

execution without inserting run-time checks

– Allows to trust the compiler completely and even to debug it during

the development process.

Formal verification. Supplement. Marius Minea



Verification of programs in practice 11

CCured: strongly typed C code

[Necula et al ’01]: C programe correct from typing point of view

– combination of type inference and runtime checking

– type inference used to establish as much as possible of the code as

being type-safe

– run-time checks are inserted in the rest of the source to ensure

correctness of memory access

– basic idea: extending the type system with pointers qualified as

SAFE (just dereferenced), SEQ (for arrays) and DYNAMIC (any access)

– additional fields (base and length) are introduced for pointers which

are not SAFE

– slowdown factor: 1 - 2 (compared to 10-100 for Purify)

– analysis also allows detection of errors

Formal verification. Supplement. Marius Minea



Verification of programs in practice 12

Extensions for metacompilation

Context: lightweight and semi-formal methods: sacrifice part of sound-

ness/completeness guarantees to increase practical applicability

Metacompilation [Engler et al ’00]: for bugs in operating system code

– allows to check well-defined high-level (API) rules, (e.g., “variable x

is protected by semaphore s”, “interrupts must be reenabled”)

⇒ by defining a meta-semantics accessible to the compiler

– rules are specified as automata which transition while analyzing a

relevant pattern of source code

– an augmented C compilet applies these extensions to semantic anal-

ysis (propagation through the control flow graph, locally or globally)

– results: hundreds of errors in Linux, OpenBSD, Exokernel, etc.

Related approach: automatic extraction of models from source code

– by slicing (also for operating systems)

– models are then analyzed by a model checker

Formal verification. Supplement. Marius Minea


