Computer Security
Software vulnerabilities. Buffer overflows.
Marius Minea

5 October 2017



Simple (classic) buffer overflow

Aleph One, Smashing the stack for fun and profit, Phrack magazine 7(49)

Overflow any stack-placed buffer accepting unchecked input

unsafe functions: strcpy, strcat, scanf with %s
gets: deleted from C standard in 2011
safe alternatives introduced for some

Danger not limited to unsafe input
also careless overflow of index in (local) array

Reason: low abstraction level of C
no objects carrying size info (that could be checked)
can create arbitrary pointer values using pointer arithmetic
= checks are responsibility of user, not of runtime system



Simple example (in your lab)

void func (char *str) { High Address
char buffer[12];
int variable_a;
strepy (buffer, str); str (a pointer to a string)
o
E Return Address
o
Int main() { s Previous Frame Pointer (FP) Current FP
char *str = “I am greater than 12 bytes”; 5 buffer(0] .. buffer(11]
func (str);
} variable_a
Low Address
(a) A code example (b) Active Stack Frame in func()

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf


http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

What happens on overflow

buffer[0]

buffer[1] return address slot overwritten
buffer[2] on function return, execution jumps
buffer[3] wherever that points to

buffer[10] For successful exploit, must know:
buffer[11] 1) position of return address slot

relative to buffer start:
i.e., buffer size and stack layout
(calling convention)

prev.frame ptr
return address
str (fct. arg.)

2) absolute memory address of buffer
(to fill in proper payload address)

-
-
2

PR

nxt stack frame

o v |0 — < |lv|T|&El—|—|<|o




Exploit: improving chances

Malicious Code Malicious Code
> c
i)
k3]
o
£
2
2
<]
str >
k>
[}
8
n

Previous FP Previous FP
buffer [0] ...... buffer [11] buffer [0] ...... buffer [11]
(a) Jump to the malicious code (b) Improve the chance

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf


http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

Steps to successful exploit

Let’s revisit exploit assumptions:

can determine where to inject payload (address)
can overwrite return address
tampering is not detected

can execute payload code



How to protect?

Option: make it difficult to find attack point (address)
Attacker must know what address to jump to:
Address Space Layout Randomization

What flexibility does the attacker code have?
Is attack still realistic? For 32-bit vs. 64-bit ?



How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:



How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:

Check return address itself = need copy of correct value

Check bytes next to (before) ret address = canaries
terminator canary: 0, CR, LF, EOF
random canary (don't know = can't put back)
random XOR canary (must also know control value)

Who/how/when implements these checks?



How to protect?

Option: hamper execution

Attacker must execute injected code:
Non-executable stack / write XOR execute



Advanced attacks: return-into-libc

If you can't execute code on stack, try something else

Typical attack is to call exec or some other library function
= instead of executing code (call exec), put address (and parameters)
of libc function on stack, in place of normal ret address

Which protections are effective?
Can chain attacks — put multiple library addresses on stack

Generalize: return-oriented programming



Overwriting a pointer

Function pointers (denote code)
pointers from longjmp
pointers to user functions
pointers to library functions (PLT: procedure linkage table)

or usual pointers to data

Attacks might be in two steps:
a buffer overflow overwrites a pointer (to desired address)
in later code, this is used to overwrite critical area
ret address, PLT, etc.



Software security: memory vulnerabilities

©@ &6 & ® o 06

out of bounds

Make a pointer go
become dangling

Make a pointer |

Use pointer Use pointer
to write (or free) toread .

V.
T —— Memoysafety

Modify a
data pointer

1

variable ... variable

Modify a data I

Output data I

VILA.
| | Data Integrity|
|
L 1§
. to the attacker - to the attacker Interpret the
specified code ) Uy specified value output data V.B.
Instruction Set Address Space
" P Data Space
Randomization Randomization
+ Randomization
|
{ Y 1

Code corruption
attack

data variable

=5
Use pointer by
indirect call/jump

=7
Use pointer by
return instruction

Use corrupted I

VIILB. VILB.
y Contrt fow itegry Data-flow ntearity

L

Execute available Execute injected
gadgets / functions shellcode

<5 Non-executable Data /|

Instruction Set
Data-only Information
attack leak

Szekeres, Payer, Wei, Song. SoK: Eternal War in Memory, IEEE S&P 2013




