
Test Automation

20 December 2017

The problem of test automation

Testing has repetitive components, so automation is justified

The problem is cost-benefit evaluation of automation [Kaner]

Time for: test creation, checking their functionality, documentation

Is automation reusable? (if the program evolves)

Is maintenance needed? (GUI change, internationalization)
⇒ Test automation: treated like any software development

Does it delay finding bugs? (fewer resources to run tests)

Does it find enough bugs? Or are most found by manual testing

Is it powerful enough? Or does it automate only “easy” tests?

Example: Capture-replay

1) Record user actions (mouse/keyboard) and resulting screen
(bitmap) ⇒ most primitive level

– other checks: with tester effort (interrupt/insert)
– fragile: susceptible to any product change
– possible comparison errors in resulting image

2) script with high-level actions (select menu/button)
– more flexible, but does not check graphic layout (low level:

font, text size/overwrite, etc.)

3) scripting language to automatically generate new tests

Disadvantage of capture-replay
Cannot continue from errors
⇒ errors are found manually in the recording process
⇒ only rerunning a “good” test is automated (regression)

Does not define tests implicit for human (“all the rest is OK”)
(cannot detect unspecified errors, is inflexible – e.g. bitmap)

Example: Test monkeys

Automated tools that execute random tests
(without a testor’s knowledge on product functionality)
Dumb monkeys: completely ignore purpose (know just
mouse/keyboard)

but may have basic notions about windows/menus/buttons
Smart monkeys: have a state model of the application, explore
transitions between these states

++ can sometimes find 10-20% of errors [Nyman, Microsoft, 2000]
++ good preliminary coverage (e.g.: 65% in 15 min for a text
editor)
++ completely automated, no human effort for test capture
-- “dumb”: only bug known to monkeys is system crash
-- ⇒ errors are hard to record and reproduce
++ runs independently, unsupervised, minimal resources (cost)

What can we automate in testing?

Test execution
e.g. any unit testing framework
useful in

Test evaluation
= problem of test oracle : did the test pass ?
Nontrivial, often needs manual inspection. Risks:
– undetected errors (imprecision)
– false warnings ⇒ cost of manual checking
Ex: compare continuous signals (in automotive industry)

image comparison (for screen/printer)

Test generation
Relatively easy: generating test skeletons (declarations + calls)
More difficult: intelligent generation of relevant data (coverage)

Choosing a test architecture [Kaner]

1) Data-driven architecture
separates data from test structure (like in programs)
Example: table. row = test; columns = test parameters
A script generates a test case for every table row
Minimal reasonable coverage: every pair of parameter values

(for every combination of values, number is exponential)

2) Framework-based architecture
A library of functions separates testing from UI
e.g. open(file), independent of actions for opening

(menu, button click, keyboard, etc.)
++ reuse for frequent actions
++ indirection ⇒ insulation from testing tool
-- costly, amortized only in future releases

Specification-based testing

Automatable (keyword testing) for spects in well-defined language
Starting from documentation: tabular spec, e.g. [Pettichord]

Test ID Operation Table Name Type Nulls

dtbed101 Add Col TB03 NEW INT COL CHAR(100) Y

Important: choose format easily understandable by user
A translator/test interpreter generates the test driver from the
table or interfaces with the (commercial) testing tool used
++: requirement-driven (what, not how), independent of
implementation and testing tool, self-documented

More advanced: automated test generation from specs in formal
language

e.g. decision tables in RSML in TCAS-II aviation protocol
test generation from timing diagrams in embedded systems

Model-based testing

Models: finite automata, UML, Statecharts (hierarchical
automata), Message Sequence Charts, timed automata, Petri nets,
Markov chains...

Test generation criteria: satisfactory model coverage
all states / transitions; combinations of k consecutive transitions
(k-switch cover)

++ facilitates generation of relevant tests
-- investment in model building and maintenance

Testing based on model checking
by state space exploration, starting from specifications:

1) question: can the model reach a given state ?
2) if so, a model checker will generate an example trace = test case

Implementation-based testing: symbolic execution

Goal: exercising program, satisfying a coverage criterion
⇒ needs: instrumentation to measure test coverage
How: set of paths: random choice + directed search
(to reach branches not yet covered)

Symbolic execution: executing program using expression
with symbolic variables, rather than concrete (numeric) values

Symbolic execution gathers path conditions for followed branches

Satisfiability of conditions is checked with specialized tools
(satisfiability checkers, constraint solvers)
⇒ generate input data that will exercise that path
or prove path is infeasible ⇒ stops exploring that path

Symbolic execution for program testing

described as early as 1976 (James C. King)

program is executed by a special interpreter, using symbolic inputs
⇒ results in symbolic execution tree

tree traversal stops when path condition becomes unsatisfiable

Test generation purpose:
attaining high coverage
sometimes, reaching a specific branch

Successful mature technique, hundreds of papers, many tools:
Java Pathfinder, (j)CUTE, Crest, KLEE, Pex, SAGE, ...

for C/C++, C#, Java, more recently JavaScript

Variants of symbolic execution

Classic completely symbolic execution
explores each execution path independently

c1 ?

c2 ? c3 ?

¬c1 ∧ ¬c2 ¬c1 ∧ c2 c1 ∧ ¬c3 c1 ∧ c3

Problem: must express all program/language semantics as formula
solving arbitrary formulas impossible (limited to simple arithmetic)

reality: complex math, library function, environment
solution: model libraries & environment

e.g. KLEE tool has models for some 40 syscalls (2.5 kloc)

Dynamic (concolic) symbolic execution

symbolic execution is directed by concrete run (hence: “conc olic”

When symbolic execution is infeasible, perform a concrete
execution step

e.g. nonlinear arithmetic, library/system functions

function explore(pathcond = [c1, c2, . . . , cn])
for k = n downto 1 do

inputs = solve pathcond = c1 ∧ . . . ∧ ck−1 ∧ ¬ck (flip ck)
rerun with new inputs; capture new pathcond’
explore(pathcond’)

Problem: by using concrete values, might not reach desired path

Concretization as potential obstacle

y = hash (x) ; // can ’ t s o l v e hash f o r m u l a => y i s c o n c r e t e
i f (x + y > 0)

// path 1
e l s e

// path 2

Assume: x = 20; y = hash(20) = 13 ⇒ path 1
To reach path 2, negate x + y > 0, with concrete y (constant 13)
Solver might return, e.g., x = -15
but we might have hash(15) = 27 (can’t predict) and then
x + y > 0

⇒ execution still follows path 1

⇒ retry; worst-case: degrades to random testing

When is test automation efficient ?

In regression testing: need only store tests and expected results
(and means to automate comparison)

Testing user interfaces (discussed earlier)

Testing compilers / translators
automated test generation starting from input grammar
explores random/statistic combination of grammar rules

Load/stress testing: random; quantity rather than content is relevant

Fuzz testing: generate large quantities of random / possibly hostile input,
to detect input validation errors or security vulnerabilities

e.g. Randoop [Microsoft]: 4 M tests in 150 CPU hours / 15 person-hr
30 bugs in code tested for 200 person-years, vs. 20 errors/year manually
see also http://research.microsoft.com/en-us/projects/Pex/

http://research.microsoft.com/en-us/projects/Pex/

Basic workings of a fuzzer

e.g. American Fuzzy Lop http://lcamtuf.coredump.cx/afl/

maintains queue of test inputs
mutates inputs using several strategies
if new coverage achieved, add mutant to input queue

minimize each test input (keeping coverage)
minimize input corpus (avoids overlap)

records transition coverage between program basic blocks
classifies runs into crashes/hangs/normal exit

highly successful, found many security vulnerabilities

mutating inputs can synthesize interesting formats (e.g. images)

can identify format fields with various meaning
(length, checksum, payload, control opcode, etc.)

http://lcamtuf.coredump.cx/afl/

Automated debugging

After automating detection ⇒ help in fault localization

Minimizing test inputs
binary search, finds (file) input half that caused error

Minimize differences between correct and erroneous run
also binary search, for two close inputs

Fault localization in space
in debugger, compare execution state of correct and buggy run
detect (precisely/statistically) invariants/patterns violated by

erroneous run

Fault localization in time
compare erroneous runs and find points where infected variables

start affecting output

Delta debugging [Zeller]: partial automation of these techniques

