
Static Analysis
Dataflow Analysis

25 October 2017



Static analysis: definition

Analysis of code (usually source) without executing the program, in order
to determine some program properties

mainly correctness, but also performance, etc.

Complementary to dynamic analyses (that run the code)

Sample properties
uninitialized variables
null pointers
unused assignments
code vulnerabilities (overflows, index out of range, etc.)

Usually, static analyses are linked to program semantics
sometimes, limited to (syntactic) structure of program

History:
strongly linked to compilers (mainly optimization)
more recently: in language design; for error detection



Dataflow analysis

Techniques originating in the compiler domain
used for code generation (e.g., register allocation)
and code optimization (constant propagation/folding, common

subexpression elimination, detecting uninitialized variables, etc.)

The same techniques can be applied to code analysis – very general

Basic ideas
construct program control flow graph
analyze how properties of interest change throughout the program

(while traversing CFG nodes / edges)



Program control flow graph (CFG)

A program representation in which
nodes are statements
edges indicate sequencing/control flow (including jumps)
⇒ nodes may have:

one successor (e.g., assignments)
several successors (branch statements)
several predecessors (e.g., join after an if)

Sometimes we also use the dual representation:
nodes are program control points (program counter values)
edges are statements with their effects



Sample program and CFG

int a = 0, b, c = 0;

do {

b = a + 1;

c = c + b;

a = 2 * b;

} while (a < 100);

return c;

a = 0

b = a + 1

c = c + b

a = 2 * b

return c

a≥100



Notation

G = (N,E ) : control flow graph (N : nodes; E : edges)

s : program statement (node in CFG)
entry , exit : program entry and exit points
in(s) : set of edges leading to s (having s as destination)
out(s) : set of edges outgoing from s (having s as source)
src(e), dest(e) : source and destination statement of edge e
pred(s) : set of predecessors of statement s
succ(s) : set of successors of statement s

We will write dataflow equations:
describe how analyzed values (dataflow facts) change from one

statement to another

We need the value (property) of interest:
at the entrypoint of s (denote: Vin)
and the exit point (denote: Vout)



Example: Reaching definitions

What are all assignments (definitions) that may reach the current point
(without being overwritten by other assignments on the path)

Elements of interest: pairs (variable, source line for def).
For every statement (identified by its label l) we want the value before
RDin(s) and after RDout(s)

The entry point is not reached by any definition
RDout(entry) = {(v , ?) | v ∈ V }

An assignment l : v ← e
removes all previous definitions for v (unchanged for other vars)
and records current statement as definition

RDout(l : v ← e) = (RDin(s) \ {(v , s ′)}) ∪ {(v , l)}
Def-values at entry of a statement are union of def-values at exit of
predecessor statements:

RDin(s) =
⋃

s′∈pred(s) RDout(s ′)



Example: Live variables analysis

At every program point, which variables will have their values used on at
least one path from that point?

useful in compilers for register allocation

Transfer function: LVin(s) = (LVout(s) \ write(s)) ∪ read(s)
A variable is live before s

if it is read by s
or it is live after s and not written by s
⇒ direction of analysis is backwards

Meet (combine) operation:

LVout(s) =

{
∅ if succ(s) = ∅⋃

s′∈succ(s) LVin(s ′) otherwise

⇒ combination is union (may, at least one path)
Computation: worklist algorithm that makes changes from initial values
until there are no more changes ⇒ fixpoint is reached



Example: Available expressions

At every program point, what are the expressions whose value is available
(previously computed) without having changed on any path to that point?

if value is stored in a temp / register, need not recompute

Transfer function: AEout(s) = (AEin(s) \ {e | V (e) ∩ write(s) 6= ∅})
∪{e ∈ Subexp(s) | V (e) ∩ write(s) = ∅}

(expressions at entry of s that have not been changed by s,
and any expressions computed in s without change to their variables)

Meet (combine) operation:

AEin(s) =

{
∅ if pred(s) = ∅⋂

s′∈pred(s) AEout(s ′) otherwise

⇒ combination done by intersection (must, on all paths);
analysis direction is forward



Example: Very busy expressions

What expressions must be evaluated on any path from the current point
before any of their variables is modified ?
⇒ evaluation can be hoisted up to the current point, before any branches
– a backwards and must (universal) analysis

VBEin(s) = (VBEout(s) \ {e | V (e) ∩ write(s) 6= ∅}) ∪ Subexp(s)

VBEout(s) =

{
∅ if succ(s) = ∅⋂

s′∈succ(s) VBEin(s ′) otherwise



Analyzed properties (dataflow facts)

Concretely, for each problem: we analyze some property, e.g.
– value of a variable at a program point
– or interval of values for a variable
– or sets of variables (live), expressions (available, very busy),
– possible definitions for a value (reaching definitions), etc.

Abstract view: a set D of values for a property (dataflow facts)
Restriction: D is a finite set



Lattices

A lattice is a partially ordered set, in which every pair of elements has a
least upper bound and a greatest lower bound.
(an element “larger”, resp. “smaller” than either of them)
Ex: powerset of a set (intersection, union)
Ex: set of divisors of a number (gcd, least common multiple)

Image: http://en.wikipedia.org/wiki/File:Hasse_diagram_of_powerset_of_3.svg

http://en.wikipedia.org/wiki/File:Lattice_of_the_divisibility_of_60.svg

http://en.wikipedia.org/wiki/File:Hasse_diagram_of_powerset_of_3.svg
http://en.wikipedia.org/wiki/File:Lattice_of_the_divisibility_of_60.svg


Transfer functions

Concrete domain: program statements change program state.
e.g., value of variable after a statement is a function of its value before
the statement.

Abstract domain: Each statement s has an associated transfer function
F (s) : D → D that determines how the value of a property at the start of
a statement is changed by that statement:
Valout(s) = F (s)(Valin(s)) (for analysis going forward),
or conversely (for backwards analyses)

Restriction: analysis is easier for monotone transfer functions:
x v y ⇒ f (x) v f (y)

(intuition: if the argument is more precise, so is the result)

Special case: bitvector frameworks: the lattice is a powerset, P(D),
transfer functions are monotone, of the form:

F (s)(v) = (v \ kill(s)) t gen(s)
(v = dataflow fact, gen/kill(s) = information generated/deleted by s)



Dataflow equations

Example for forward analyses:
Valout(s) = F (s)(Valin(s))

Valin(s) = s′∈pred(s) Valout(s ′)

where is meet (combining effects) over several paths (could be ∩ or ∪)

Intially, we know value of Valout(entry).

For backwards analyses, we initially know Valin(exit) and the roles of
in and out are switched.



Solution: worklist algorithm

To compute a solution to this equation system: an iterative algorithm
that propagates changes in the direction of the analysis.

foreach s ∈ N do Valin(s) = > // no info
Valin(entry) = init // depending on analysis
W = {entry}
while W 6= ∅

choose s ∈W
old out = Valout(s)
W = W \ {s}
Valin(s) = s′∈pred(s) Valout(s ′)
Valout(s) = F (s)(Valin(s))
if Valout(s) 6= old out then

forall s ′ ∈ succ(s) do W = W ∪ {s ′}



Termination: fixpoint condition

Termination of analysis is guaranteed if the transfer function is monotone:
x v y ⇒ f (x) v f (y), which implies that the computed values

Def: A fixpoint of a function f is a value x so that f (x) = x
Kanster-Tarski theorem guarantees that a monotone function over a
complete lattice has a least and a greatest fixpoint.

The worklist algorithm computes the least fixpoint solution for the
equation system given by the transfer functions.



Meet over all paths

We wish to compute the combined effect of the program statements:
For a path (statement sequence) p = s1s2 . . . sn we define

F (p) = F (sn) ◦ . . . ◦ F (s2) ◦ F (s1)
and we wish to compute:

p∈Path(Prog) Fp(entry)
The iterative algorithm combines effects at each join point before
continuing computation. Since functions are monotone, we have:

f (x t y) w f (x) t f (y)
so analysis loses precision
Distributive transfer functions satisfy: f (x) ∪ f (y) = f (x ∪ y)
In this case, the iterative fixpoint algorithm is equivalent with meet over
all paths.
⇒ combining info on execution paths does not lose precision

All 4 classical examples (live variables, etc.) are distributive.



Classification of analyses

– forward or backwards
– must or may
– flow-sensitive or insensitive (flow = control flow)

e.g., does the statement order in the program matter ?
– no: for variable used/changed, called functions, etc.
– yes: for properties linked to actual values computed by program

– context-sensitive or context-insensitive ?
is the analysis of a function/procedure specialized depending on the

call site or not ? (generic function summary)
– path-sensitive or path-insensitive

does it account for correlation between execution paths ?


