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1 Introduction 
The task of checking if a computer system satisfies its timing specifications is 
extremely important. These systems are often used in critical applications where fail- 
ure to meet a deadline can have serious or even fatal consequences. This work 
describes Verus, an efficient tool for performing this verification task. Using our tool, 
the system being verified is specified in the Verus language and then compiled into a 
state-transition graph. A symbolic model checker allows the verification of untimed 
properties expressed in CTL [8]~ Time bounded properties can be verified using 
RTCTL model checking [7]. Moreover, algorithms derived from symbolic model 
checking are used to compute quantitative information about the model [1]. The 
information produced allows the user to check the temporal correctness of the model: 
schedulability of the tasks of the system can be determined by computing their 
response time; reaction times to events and several other parameters of the system can 
also be analyzed by this method. This information provides insight into the behavior 
of the system and in many cases it can help identify inefficiencies and suggest optimi- 
zations to the design. The same algorithms can then be used to analyze the perfor- 
mance of the modified design. The evaluation of how the optimizations affect the 
design can be done before the actual implementation, significantly reducing develop- 
ment costs. Another advantage of our approach is that the Verus language has been 
especially designed to allow a straightforward description of the temporal characteris- 
tics of programs. This makes modeling real-time systems in Verus a simpler task. 

Verus uses a discrete notion of time. A Verus program is modelled by a finite 
state-transition graph where each transition corresponds to one time unit. The sim- 
plicity of this representation makes it amenable to a symbolic implementation using 
BDDs. The tool is very efficient, as attested by the systems verified. One example has 
15 concurrent processes and counterexamples that have thousands of states have been 
produced in seconds. Perhaps even more indicative of the usefulness of the method 
are the types of systems verified. We have applied this method to the verification of 
several real systems, such as an aircraft controller [4], a robotics controller [5] and a 
distributed heterogeneous real-time system [3]. All examples verified are either actual 
systems or use components and protocols employed in current industrial products. 

This research was sponsored in part by the National Science Foundation under grant no. CCR-9217549, 
by the Semiconductor Research Corporation under contract 95-DJ-294 and by the Defense Advanced 
Research Projects Agency, Information Science and Technology Office, under title "Research on Paral- 
lel Computing", ARPA order no. 7330, issued by DARPA/CMO under Contract MDA972-90-C-0035. 



453 

2 The Verus Language 
The main goal of the Verus language is to allow engineers and designers to describe 
real-time systems easily and efficiently. It is an imperative language with a syntax 
resembling that of C. The data types allowed in Veins are fixed-width integer and 
boolean. Nondeterminism is supported, which allows partial specifications to be 
described. Language constructs have been kept simple in order to make the compila- 
tion into a state-transition graph as efficient as possible. Smaller representations can 
then be generated, which is critical for the verification and permits larger examples to 
be handled. Details about the Verus language can be found in [1]. 

Overview 
A fragment of a simple real-time program is used to give an overview of the lan- 
guage. This program implements a solution for the producer-consumer problem by 
bounding the time delays of its processes. No synchronization is needed if the time 
delays of producer and consumer are defined properly. The code for the p r o d u c e r  
is shown below. Variable p is an index to the data buffer. After initializing index p 
and variable p r o d u c e ,  the p r o d u c e r  enters a nonterminating loop in which items 
are produced at a certain rate. Line 7 introduces a time delay of 3 units, after which an 
item will be produced. Line 8 marks production by asserting p r o d u c e .  In line 9 the 
index p is updated. Line 10 ensures that the event p r o d u c e  is observed. It is needed 
because the state of a Verus program can only be observed at w a i t  statements. 

I producer (p) 
2 { 

3 boolean produce; 

4 p:O; 

5 produce : false; 
6 while ( ! stop) { 

7 wait (3) ; 

8 produce : true; 

9 p : p + i; 

I0 wait ( 1 ) ; 

I] produce = false; 
12 }; 

13 } 
Figure 1. Producer code 

In Verus time passes only on wet i t statements, lines 4, 5 and 6 execute in time zero. 
This feature allows a more accurate control of time, and eliminates the possibility of 
implicit delays influencing verification results. It also generates smaller models, since 
contiguous statements are collapsed into one transition. 

The m a i n  function (not shown for brevity, as well as the consumer code) com- 
pletes the program by instantiating all processes. Process instantiation in Verus fol- 
lows a synchronous model, all processes execute in lockstep. Asynchronous behavior 
can be modeled by using stuttering, which introduces nondeterministic transitions. 
This technique is described in [1]. 
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Other Features 
Verus has many other features not shown in this program. For example, nondetermin- 
ism is implemented using the s e l e c t  statement. To illustrate how s e l e c t  works, 
let's assume that the p r o d u c e r  is not required to actually produce an item after 3 
time units, but may instead leave the value of p unchanged. This can be modelled in 
Verus by changing line 9 to p = s e i e c t { p ,  p+ 1 ) ; 

The timing characteristics of the system can be easily modeled using the periodic 
and deadline statements. For example, the code below specifies that 5 ~_ must execute 
once every 100 time units. Also, it must finish execution in less than 100 units, other- 
wise an exception will be raised: p e r i o d i c ( 0 ,  100 ,  100) { S1;  }; 

The first parameter of p e r i o d i c  is the start time, which specifies how many 
time units the code will idle before starting its execution for the first time. The second 
parameter is the period, that is, how often the code will execute. The third parameter 
defines a deadline. If execution does not finish before the deadline an exception will 
be raised. Execution may take longer than the sum of the waits because of synchroni- 
zation. The d e a d l i n e  statement is similar, but it does not specify a period. Excep- 
tion handling as well as the periodic and deadline statements are explained in [1]. 

3 The Verification Algorithms 
CTL and RTCTL Model Checking 
Verus allows the verification of untimed properties expressed as CTL formulas [8] as 
well as of timed properties expressed as RTCTL formulas [7]. RTCTL extends CTL 
by allowing bounds on all CTL operators to be specified [7]. Many important proper- 
ties of real-time systems can be verified using both CTL and RTCTL model checking. 
For example, we have used RTCTL to show the existence of priority inversion in a 
real-time system [2]. In this example, we have modeled a simple real-time system in 
which processes communicate in a non-regular pattern. The bounded until operator 
allows us to determine the existence of priority inversion, and to check that the solu- 
tion implemented, priority inheritance, avoids the problem. 

Quantitative Algorithms 
Most verification algorithms assume that timing constraints are given explicitly. Typi- 
cally, the designer provides a constraint on response time and the verifier automati- 
cally determines if it is satisfied or not. However, these techniques do not provide any 
information about how much a system deviates from its expected performance, 
although this information can be very useful in fine-tuning the system behavior. 

Verus implements algorithms that determine the minimum and maximum length 
of all paths leading from a set of starting states to a set of final states. It also has algo- 
rithms tha't calculate the minimum and the maximum number of times a specified con- 
dition can hold on a path from a set of starting states to a set of final states. Our 
algorithms provide insight into how well a system works, rather than just determining 
whether it works at all. They enable a designer to determine the timing characteristics 
of a complex system given the timing parameters of its components. This information 
is especially useful in the early phases of system design, when it can be used to estab- 
lish how changes in a parameter affect the global system behavior. 
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Several types of information can be produced by this method. Response time to 
events is computed by making the set of starting states correspond to the event, and 
the set of final states correspond to the response. Schedulability analysis can be done 
by computing the response time of each process in the system, and comparing it to the 
process deadline. Performance can be determined in a similar way. 

Selective Quantitative Analysis and Interval Model Checking 
The algorithms described above compute the minimum and maximum time delays 
along every possible execution sequence of a real-time system, In many situations, 
however, we may be interested in computing time delays that relate only to execution 
sequences that satisfy a given property. We propose a method for specifying and veri- 
fying properties such as these. The user specifies a property that must be satisfied in 
all paths traversed. This property is expressed using linear-time temporal logic 
(LTL) [6]. Special model checking techniques [6] are used to ensure that only paths 
satisfying the formula are considered by the algorithms. 

4 Conclus ions  
This work describes Veins, a new tool to be used in the formal verification of real- 

time systems. In Verus the designer specifies the system to be verified in a C-like lan- 
guage, and uses temporal logic model checking and quantitative timing analysis to 
verify its correctness. The information produced by our tool can help in verifying a 
real-time system in many ways. It not only assists in determining its correctness, but 
also provides insight into the behavior of the system. This allows for a better under- 
standing of the system and in some cases it even suggests optimizations to the design. 

We have used this tool to analyze several real-time systems of industrial complex- 
ity, such as an aircraft controller, a robotics controller and a distributed heterogeneous 
system. In all cases we have been able to determine the temporal correctness of the 
system. In several instances the results produced suggested modifications to the 
design that resulted in more efficient systems. 
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