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Abstract—The SPaCIoS project has as goal the validation and
testing of security properties of services and web applications.
It proposes a methodology and tool collection centered around
models described in a dedicated specification language, support-
ing model inference, mutation-based testing, and model checking.
The project has developed two approaches to reverse engineer
models from implementations. One is based on remote interaction
(typically through an HTTP connection) to observe the runtime
behaviour and infer a model in black-box mode. The other is
based on analysis of application code when available. This paper
presents the reverse engineering parts of the project, along with
an illustration of how vulnerabilities can be found with various
SPaCIoS tool components on a typical security benchmark.

Index Terms—Control Flow Inference, Data-Flow Inference,
Security, Web Application, Reverse-Engineering,

I. SPACIOS PROJECT

In the Internet of Services, the way applications are de-
signed, implemented, deployed and consumed has changed.
An application is now composed of several components that
are distributed over the network, aggregated and consumed at
runtime a in demand-driven way. The goal of the SPaCIoS
project1 (Secure Provision and Consumption in the Internet
of Services) [1] is to build an integrated platform to discover
security flaws in such systems using a model-based approach.
SPaCIoS continues the work of the AVANTSSAR [2] project
which proposed an automated method for validation of trust
and security of services.

Figure 1 shows possible workflows of the SPaCIoS tool.
Since both model checking and security testing in the project
take a model as input, reverse engineering a suitable model of
the application under scrutiny is essential. We have developed
two approaches for this purpose: SIMPA (a recursive acronym
for “SIMPA Infers Model Pretty Automatically”), a black-
box model inference component which uses the interaction
with the application to incrementally build the corresponding
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Fig. 1. Model Extraction and Security Validation in SPaCIoS

model, and JMODEX, a white-box model extraction component
which works from the source code when it is available. Both
of them generate a model in the high-level formal language
ASLan++ [3], the modelling language of SPaCIoS.

Models are then augmented with security goals and proper-
ties, and a model checker generates abstract traces which may
violate the properties: the potential attacks. For vulnerability
detection, we have also developed SPaCiTE, a property- and
vulnerability-driven test case generator and execution engine.
It follows a mutation-based approach that creates potential
attack traces from a secure model. Finally, the attack traces
are executed on the SUT (System Under Test) using the test
execution engine to confirm the attacks.

In the following sections, we describe the components
presented above and show current results obtained by applying
some of these tools on a typical security benchmark.

II. BLACK-BOX REVERSE ENGINEERING OF MODELS

In order to apply the vulnerability detection techniques,
the security analyst needs to provide a formal model of the
application in the ASLan++ language. SIMPA is the black-
box component that reverse-engineers a model from the im-
plementation of the System under Validation (SUV), without
any access to the code, even at assembly level.

A. Interfacing to web applications

Both inferring a model and testing an abstract trace on the
system require bridging the gap between abstract modeling and
concrete implementation levels. We have therefore developed
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a method to generate a test driver for a web application using
a crawler, with minimal effort for the security tester.

First, we define the input and output from the model
inference point of view. An input I of a web application is a
tuple (M,A,P ): M is the request method, e.g, GET, A is the
address of the page handling the request and P is a finite set
of pairs (name, value).

The inference algorithm uses the output of the application to
distinguish between states. As a web application uses HTML
to represent a page, we define an output as an HTML page with
an abstraction of the content. Only the structure and the inputs
of the page are considered. In this way, pages with different
source code can represent the same output with different
parameter values. To extract the position of the parameters
in the pages, each time we get an input I leading to an output
O, we fuzz the parameter values of I to generate multiple
versions of the page, then we compare the source code of
these pages to detect the position of the different parameters.

The crawler’s goal is to discover as many HTML pages
as possible, maximizing the number of different inputs and
outputs. As the page visiting order is important, we reset the
application before applying each input sequence to prevent
previous requests from changing the application state. Crawl-
ing stops when all discovered inputs have been processed. In
web applications, millions of pages may each be associated
with one parameter value, e.g., a gallery of pictures represented
by an ID. To avoid crawling them all, we defined rules like
stopping the crawler when two pages differing in only one
input parameter (ID) lead to the same output.

We also need to provide the crawler with some critical val-
ues that cannot be found, guessed or generated automatically
by the crawler, e.g., credentials needed to reach all pages. This
step is the only manual part of the test driver generation.

After crawling, an XML file is created containing input
and output symbols, their parameters and the set of different
outputs. From this file, the test driver is instantiated, provid-
ing functions to convert abstract inputs into concrete HTTP
requests, and concrete HTTP responses into abstract outputs.

The inference algorithm and the crawler are implemented
in the same tool named SIMPA. A module to load and use the
driver is available from the SPaCIoS tool but also for third-
party software. More details about the method are given in [4].

B. Overview of the inference algorithm

SIMPA implements an improved version of the inference
algorithm from [5]. We adapted the learned model to the
SPaCIoS context and especially to web applications by consid-
ering an EFSM (Extended Finite State Machine) as the model:
an FSM with parameterized transitions, guards, and a function
for each output parameter. Basically, the algorithm explores
each input of the system for each discovered state and records
the associated output to be able to detect new distinct states.

The values of the parameters are also stored to be processed
by data mining algorithms in order to produce decision trees
and build compact guards and better output functions.

C. Non-deterministic parameter detection

Whether for authentication or to prevent replay attacks, most
applications use non-deterministic values, such as session-ID.
Our algorithm can handle these non-deterministic values (ndv),
which are critical for security. To detect them, we consider
the system as deterministic; in this way, in the same state, the
same input with the same parameters should produce the same
output with the same parameters. Otherwise, we consider the
different parameters as ndv. Then, their current value will be
used for further tests to discover potential new behaviours.

D. Data mining

For building guards and output functions we use two differ-
ent algorithms : the J48 decision tree learning algorithm [6]
and M5P [7] for string and number parameters, respectively.
This step is important for two reasons: it allows us to build
more realistic and compact guards, and to identify reflected
values which are critical to detect XSS (cross-site scripting).

III. WHITE-BOX REVERSE ENGINEERING

A formal model can also be reverse engineered from the ap-
plication code, if available. The JMODEX tool [8] implements
this white-box modeling approach for JSP web applications.

1) Extracting behavioral automata: JMODEX first builds
an extended finite state machine for each component (servlet)
of the target system. A node in this automaton represents a
control point in the component code (e.g., entry / exit point).
An edge subsumes all component execution paths that produce
the same updates, or state changes, and also has a guard
formula representing the conditions that trigger its execution.

At present, JMODEX can analyze servlet-based applications.
It captures updates to session attributes, the usage of request
parameter values, etc. JMODEX can also model the database of
an application and analyze a subset of SQL, capturing database
updates, the usage of particular database values, etc.

2) ASLan++conversion: As second step, JMODEX converts
the automata of all application components into a formal
model in the ASLan++ language. The automaton control
flow is expressed using ASLan++ statements, and translation
schemas are applied for each expression type that can arise in
an application. For instance, since ASLan++ does not support
arithmetic, integer operations are modeled by uninterpreted
functions with properties defined as Horn clauses.

JMODEX can be used as an Eclipse plugin and enables a
user to intervene in the model extraction process in order to
reduce the size of the resulting model (e.g., specify under-
approximations of the system behavior, abstract away parts of
the investigated program, etc.). In a similar manner, a user can
describe the semantics of library methods which are part of
other web development frameworks. Thus, a user may extend
the usage of our tool to other development technologies.

Currently, JMODEX does not handle all Java constructs (e.g.,
polymorphic calls, exceptional paths). Nevertheless, an ex-
tracted model has been already used successfully [8] to detect
a known access control vulnerability in a web application with
about 1500 lines of code, resulting in a model of 140 lines.

412



IV. MUTATION-BASED VULNERABILITY DETECTION

The mutation-based vulnerability detection approach starts
with secure ASLan++ models. A secure model is by definition
one in which a model checker cannot find any trace that
violates the defined security properties. If the initial model
already violates a high level security property, the model
checker returns a counter-example trace that could be inter-
preted as an abstract test case. Such an insecure model is
eventually improved by the modeler until it does not violate
any security property anymore. The approach addresses the
issue how to proceed from such a model, since it cannot be
used directly for test case generation. Nevertheless, semantic
mutation operators can be applied to such secure models in
order to inject common vulnerabilities and check whether they
lead to traces that violate security properties. This approach is
implemented in SPaCiTE, a tool that generates and executes
“interesting” test cases for web applications [9]. SPaCiTE is
integrated into the SPaCIoS tool as an Eclipse plugin, and uses
model checkers developed in the AVANTSSAR [2] project.

Semantic Mutation Operators

SPaCiTE generates test cases from a secure model by
applying semantic mutation operators to it. These mutation
operators capture source code vulnerabilities that a software
developer might mistakenly cause during coding. By apply-
ing a mutation operator to a model, the abstraction of the
represented vulnerability is injected into the model. This step
requires that SPaCiTE understands the semantics of differ-
ent parts of the model. The semantics is provided in the
form of annotations. According to the presence of different
annotations, SPaCiTE applies a set of appropriate mutation
operators on the annotated secure model. At present, SPaCiTE
provides mutation operators for SQL injections, Reflected and
Stored XSS, and Access Control vulnerabilities. Examples of
corresponding source code level vulnerabilities are missing or
incomplete permission checks, missing or incomplete input
sanitizations, and configurations that might violate high-level
access control properties.

Each of these categories consists of a set of mutation
operators, since a source code vulnerability can be represented
in different ways. The decision which concrete operators are
applied is determined by modeling details of the secure model.

Applying mutation operators generates a set of mutated
models which is given to a model checker to look for counter-
examples. Such counter-examples are considered “interesting”
test cases because they violate a specified security property of
the web application by exploiting an injected vulnerability.

V. CONCRETIZATION FROM MODEL: WAAL

Whenever a model checker reports a counter-example, it is
at the same level as the input model. Therefore it needs to be
concretized to be executed on the SUV (Figure 1).

An abstract attack trace consists of a sequence of abstract
messages that are exchanged between different components.
Depending on which agents are simulated and which are
executed in the original form, the set of abstract messages is

split into messages that need to be generated (G-messages)
and messages that need to be verified (V-messages). Such
an abstract attack trace can be instantiated using a 2-step
mapping that involves an intermediate language called Web
Application Abstract Language (WAAL). The central idea
behind WAAL is that a sequence of abstract messages (output
of the model checker) is mapped to a sequence of browser
actions (provided by the WAAL language). The language is
composed of two types of actions: Generating Actions (GA)
and Verifying Actions (VA). The former aim at describing
how to generate an abstract message by executing actions in
a browser and the latter how to verify an abstract message.

In the first step, the security analyst provides a mapping with
the following characteristics: Upon executing the sequence of
browser actions, protocol-level messages are generated that
are an instantiation of G-messages and browser actions are
performed to check for V-messages. As a simplified exam-
ple, the abstract action “login(tom,pwd)” may be mapped to
inputText(tom), inputText(pwd), clickButton(Sign In), whereas
an abstract message like “list of profiles” is mapped to
browser actions that e.g., check for the existence of certain
keywords or HTML elements.

The second part of the mapping is considered to be a static
mapping since it is bound to a specific framework. It translates
each of the WAAL constructs into executable API calls of the
underlying framework so that these abstract actions can be
executed in a real browser. More details about the WAAL
language can be found in [9, 10].

VI. EXPERIMENTATION ON WEBGOAT

The techniques presented above have been applied to the
WebGoat [11] platform. It consists of several deliberately inse-
cure applications, called lessons, to illustrate each vulnerability
type. We have applied our techniques to the “Stored XSS”
lesson where we have access to a human resource management
system with a database of profiles and classic actions, e.g.,
view, edit, delete. A stored Cross-site Scripting attack consists
of a vulnerability that allows an attacker to store malicious
(Java-)Script in the application so that it gets executed when
a victim visits the corresponding web page.

For the reverse-engineering part, SIMPA detects all inputs
and outputs of the lesson and builds a model in less than
a minute. The only values provided by the user are the
credentials. Given a security goal corresponding to the XSS
attack, the model checker quickly finds a trace showing that the
administrator can see each field of any profile after a modifica-
tion by the owner, which is consistent with the application, but
also a potential XSS vulnerability. Using WAAL, we were able
to execute this trace on the application with an XSS payload
as the parameter value and confirm that it is a real attack.

Operating on an annotated secure model for the above de-
scribed WebGoat lesson, SPaCiTE applied 8 different semantic
mutation operators (covering SQL injection, XSS attacks, and
access control violations) and generated 54 mutated models.
Executing the reported attack traces, SPaCiTE successfully
executed 14 attacks (6 related to access control and 8 to XSS).
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VII. RELATED WORK

Each analysis component of the SPaCIoS project can be
related individually with various state-of-the-art approaches.

The black-box model inference engine extends previous
work to learn a parameterized model [5] by improving the al-
gorithm for the security testing domain. Existing work [12, 13]
usually considers the specification as available, but most of the
time, this is not the case. Crawling modern web applications
has been explored in [14] and [15] using DOM events but not
for the purpose of test driver generation. Recently, crawling
and vulnerability detection have been combined in [16].

Extracting a formal model from source code for use with a
model checker has been also addressed in [17]. In contrast, our
white-box modeling component produces models for verifiers
specially built to check security properties.

Formal models and model checkers have long been used for
test case generation. As surveyed in [18], generating test cases
is usually based on satisfying structural criteria on the model
(e.g., state or transition coverage). In contrast, SPaCiTE relies
on a domain-specific fault model due to the lack of a strong
relationship between such coverage criteria and fault detection
effectiveness [19]. The idea of using mutation testing for test
case generation was successfully applied for specification-
based testing from AutoFocus or HLPSL models [20, 21]. Our
work differs in that semantic mutation operators capture real
vulnerabilities in web applications. Moreover, we do not stop
after test generation but also provide a semi-automatic way to
execute the generated test cases on real implementations.

Armando et al. [22] describe work closely related to
SPaCiTE but for protocols instead of web applications. They
start from an already insecure model described at HTTP
level and map from abstract to concrete HTTP elements for
executing test cases. The fully automatic procedure is achieved
at the price of describing the model at the HTTP level.

VIII. CONCLUSION

We have presented two possible workflows of the SPaCIoS
tool: inferring a model in black-box mode to automatically
detect security flaws but also generating test cases from secure
models. As we use a model-based approach, we have devel-
oped two methods of reverse-engineering web applications.
Using these two complementary approaches, e.g., black-box
with HTTP interactions and white-box from the source code,
we have broadened the scope of the SPaCIoS tool to more
applications. To validate the consistency of the model for
security testing, we have briefly described the application
of the tool as a proof-of-concept on WebGoat, where the
reverse-engineered model has been model-checked. The attack
found was executed and confirmed on the system using the
execution engine. For cases where secure models were used,
the mutation-based approach was successfully applied to such
annotated models in order to generate and execute test cases
that confirm vulnerabilities in the described WebGoat lesson.
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[16] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
a state-aware black-box web vulnerability scanner,” in Proceedings of
the 21st USENIX Security Symposium, 2012, pp. 26–26.

[17] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu,
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