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Abstract—Detecting security vulnerabilities in web applications
is an important task before taking them on-line. We present
JMODEX, a tool that analyzes the code of web applications
to extract behavioral models. The security properties of these
models can then be verified with a model checker. An initial
evaluation, in which a confirmed security flaw is identified using
a model extracted by JMODEX, shows the tool potential.

I. INTRODUCTION

Due to the proliferation of services provided by companies
to their customers via the Web, the software industry is
confronted with increasingly complex problems while devel-
oping and evolving web applications. Since these programs
manipulate usually sensitive information, security issues are
definitely some of the most important ones.

To achieve its security requirements, an application uses
dedicated mechanisms such as password authentication, cryp-
tographic techniques, etc. Unfortunately, due to the increas-
ing complexity of web applications, they also become more
difficult to comprehend by developers. Thus, some security
vulnerabilities may pass unobserved, enabling an intruder to
bypass the security mechanisms used by the application.

To support identification of these vulnerabilities in code, the
research community has developed different approaches. Some
of them detect low-level vulnerabilities such as code injection.
Others detect specific classes of missing checks [1], or try to
infer logical invariants that are violated [2].

We focus on finding logical vulnerabilities using model
checkers, given explicit specifications of the desired system
properties. To maintain the advantage of verifying an ac-
tual implementation, our models are extracted from source
code. We have developed the prototype tool JMODEX, which
analyzes the code of a web application written using the
JSP/Servlet technology and builds a behavioral automaton
model for the system. This model is then expressed in the
ASLAN++ modelling language, which enables its verifica-
tion with security model checkers like CL-ATSE [3] or
SATMC [4]. The approach is complementary to using such
models for automated test generation [5].

II. MODELING IN ASLAN++

To illustrate the modelling of a system in ASLAN++,
Listing 1 presents the central part of a model for a very simple
web program. A client can send to the application a message
(line 9) with two parameters: RQP action and RQP user.

Possible actions are login, which can be performed as admin
user (line 11) or as guest user (line 16), and logout (line 20).
The application tracks the number of successful login actions
using a global counter (lines 13 and 17). The counter can
be reset by another action (line 25), but only if the client is
logged in as admin at that moment. This security requirement
is specified in the model using an assertion (line 26): when the
reset action is performed, the asAdmin predicate must be true.
This predicate is updated at lines 14, 18 and 22. We emphasize
that these latter statements do not model the actual program but
its expected behavior, the specification of the modeled system.

Listing 1. ASLAN++ Specification Example
1 e n t i t y A p p l i c a t i o n ( Ac to r : agen t ,RU: a g e n t ) {
2 symbols
3 RQP action , RQP user , SA isAdmin : message ;
4 asAdmin ( a g e n t ) : f a c t ;
5 body {
6 SA isAdmin := oNul l ;
7 w h i l e ( t r u e ) {
8 s e l e c t {
9 on ( ?RU∗−>∗Acto r : rExample ( ? RQP action , ? RQP user ) ) : {

10 s e l e c t {
11 on ( sadmin = RQP user & s l o g i n = RQP act ion ) : {
12 SA isAdmin := s y e s ;
13 RExample counter := r i n t A d d ( RExample counter , i 1 ) ;
14 asAdmin (RU ) ;
15 }
16 on ( s g u e s t = RQP user & s l o g i n = RQP act ion ) : {
17 RExample counter := r i n t A d d ( RExample counter , i 1 ) ;
18 r e t r a c t asAdmin (RU ) ;
19 }
20 on ( s l o g o u t = RQP act ion ) : {
21 SA isAdmin := oNul l ;
22 r e t r a c t asAdmin (RU ) ;
23 }
24 on ( s y e s = SA isAdmin & s r e s e t = RQP act ion ) : {
25 RExample counter := i 0 ;
26 a s s e r t onlyAsAdmin : asAdmin (RU ) ;
27 }
28 }}}}}}

When verifying this model, the CL-ATSE model checker
automatically produces the sequence of events in Listing 2 as
a counter-example for our security requirement. In short, an
intruder (named i) logs in as admin, makes another login as
guest in the same session, and finally resets the counter.

Listing 2. The Attack Identified by CL-ATSE

<i> ∗−>∗ Acto r ( 1 ) : rExample ( s l o g i n , sadmin )
<i> ∗−>∗ Acto r ( 1 ) : rExample ( s l o g i n , s g u e s t )
<i> ∗−>∗ Acto r ( 1 ) : rExample ( s r e s e t , RQP user ( 5 4 ) )

Following this interaction scenario, the reset can be per-
formed even by a client currently logged in as guest, highlight-
ing a logic security vulnerability. The reason is that logins are
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Fig. 1. A Fragment of the ISUMMARIZE Meta-Model

not tracked per session: variable SA isAdmin has the symbolic
value syes set during the first login of the attack scenario (line
12). But an intruder can ask for a guest login immediately after
an admin login. Thus, SA isAdmin should be reset to oNull
not only on admin logout, but also when a guest logs in.

III. MODEL EXTRACTION WITH JMODEX

To verify some security requirements of web applications
using a checker like CL-ATSE, we first need a model of
that program. We have built JMODEX, an ECLIPSE plug-
in that automatically extracts an ASLAN++ model from the
implementation of a JSP/Servlet-based web application. In the
following we briefly describe how JMODEX achieves its goal.

A. ISUMMARIZE – Extraction of Behavioral Automata

The first task performed by JMODEX is to capture the
behavior of each component (i.e., servlet) of the application
in the form of an extended finite state machine.

A node in this automaton corresponds to a control point
(e.g., the entry / exit point of a component or a loop header)
while an edge corresponds to an execution path within the
component. For each edge, the analysis determines a guard
representing the condition which triggers the execution of the
associated execution path, and a set of updates that capture the
assignments to the relevant state variables on the same path.

Figure 1 presents a part of the meta-model used to represent
these automata. It captures the various kinds of expressions
in the Java language (e.g., ProgramRelationalExpression).
However, we do not analyze the libraries used by an appli-
cation: special entities model the semantics of the servlet API
(e.g., assigning/using the value of a ProgramSessionAttribute
or ProgramRequestParameter); SQL queries (e.g., returning
a ProgramDbValue from the database); or library functions
abstracted away as uninterpreted (ProgramFunction).

To build the automaton for a given component, JMODEX
uses the WALA1 library to extract the component call-graph
and the control-flow graphs of each method. Next, JMODEX

1http://wala.sourceforge.net

does a depth-first traversal of the call-graph and computes the
automaton of each method such that a caller is processed after
all its called methods. This is required because our analysis
is inter-procedural and we in-line the automaton of a called
method into the automaton of the caller (recursion is currently
not supported). Consequently, when the call-graph traversal is
finished, we obtain a single automaton for the entry method
of the component and implicitly, of the entire component.

To build the automaton of a method, JMODEX traverses
the control-flow graph depth first, processing each instruction
backwards from the exit to the method entry. This determines
all execution paths through the method together with their
guards and updates. JMODEX uses large-block encoding [6] to
collapse successive steps in the control flow graph and produce
a model with fewer transitions. Figure 2 shows various phases
of building the automaton, based on the code in Listing 3.

Listing 3. A Code Example
1 p u b l i c c l a s s Example . . . {
2 p r i v a t e s t a t i c i n t c o u n t e r = 0 ;
3 p u b l i c vo id j s p S e r v i c e ( . . . ) . . . {
4 S t r i n g a c t i o n = r e q u e s t . g e t P a r a m e t e r ( ” a c t i o n ” ) ;
5 i f ( ” l o g i n ” . e q u a l s ( a c t i o n ) ) {
6 S t r i n g u s e r = r e q u e s t . g e t P a r a m e t e r ( ” u s e r ” ) ;
7 i f ( ” admin ” . e q u a l s ( u s e r ) )
8 r e q u e s t . g e t S e s s i o n ( ) . s e t A t t r i b u t e ( ” isAdmin ” , ” yes ” ) ;
9 i f ( ” admin ” . e q u a l s ( u s e r ) | | ” g u e s t ” . e q u a l s ( u s e r ) )

10 c o u n t e r = c o u n t e r + 1 ;
11 } e l s e i f ( ” r e s e t ” . e q u a l s ( a c t i o n ) ) {
12 S t r i n g isAd = ( S t r i n g ) r e q u e s t
13 . g e t S e s s i o n ( ) . g e t A t t r i b u t e ( ” isAdmin ” ) ;
14 i f ( ” yes ” . e q u a l s ( isAd ) )
15 c o u n t e r = 0 ;
16 } e l s e i f ( ” l o g o u t ” . e q u a l s ( a c t i o n ) )
17 r e q u e s t . g e t S e s s i o n ( ) . r e m o v e A t t r i b u t e ( ” isAdmin ” ) ;
18 e l s e ; / / NOP − added f o r b e t t e r u n d e r s t a n d i n g
19 }
20 }

The analysis starts at the end of the method (line 19) and an
initial automaton is built (see Figure 2A). It has a single edge
with the true guard and no update. It is easy to see that there
are 4 ways in which line 19 can be reached: from the end of the
branches at lines 5, 11, 16 and 18. Consequently, the initial
edge will be split such that one copy propagates backward
through each of these distinct points (see Figure 2B).

Next, edge 1 is propagated backward through the false
branch of the if in line 16. Since there are no operations,
nothing happens. Similarly, edge 2 is propagated backward
through the true branch of the same condition. This time
JMODEX determines that a relevant state variable (i.e., session
attribute) has been changed (line 17) and the corresponding
update is added to edge 2. After the propagation of both edges,
JMODEX observes that the condition in line 16 is responsible
for triggering the execution of edge 1 or 2. Consequently, their
guards are changed accordingly (see Figure 2C).

Next, edge 3 is propagated backward through the true
branch of the if in line 11. First, it will be split in two because
inside this branch there are two possible sub-paths: on one
JMODEX determines an update to a relevant state variable
(counter reset) while on the other there are no updates. The
execution of these sub-paths is controlled by the condition in
line 14 and thus their guards are modified accordingly. Both
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Fig. 2. The Automaton Building Process

edges are propagated backward to the beginning of the true
branch of the condition in line 11, and JMODEX substitutes
the occurrences of variable isAd on these edges with the value
assigned to it in line 12. The result is shown in Figure 2D.

Next, JMODEX arrives at the jump statement corresponding
to the condition in line 11. This condition must be true in order
to execute edges 3’ or 3” and false to trigger the execution
of edge 1 or 2. Thus, their guards are modified accordingly.
Figure 2E shows that the guard of edge 2 has been simplified
(e.g., if action is the logout string, not(”reset”.equals(action))
is true and can be eliminated from the conjunction).

This process continues until all edges reach the beginning
of the method, as seen in Figure 2F. All execution paths with
the same updates are subsumed by a single edge in the model,
with a guard that is the disjunction of the individual guards.

1) Loops: For methods with loops, we cannot determine
all execution paths through the method. Consequently, we
introduce an additional state/control point in the automaton,
associated with the loop header. Moreover, an update to a rel-
evant state variable may depend on other variables (including
locals) updated within the loop. Thus, these variables are also
relevant and their updates must be captured. The described
algorithm is repeatedly applied for the loop until a fixed point
is reached and the set of relevant variables no longer changes.

2) Infeasible paths: Some paths considered while building
the automaton may in fact be non-executable. For example, in
Listing 3, the path going through lines 8 and 10 as a result
of satisfying the right operand of the disjunction in line 9 is
infeasible: the admin variable cannot be simultaneously equal
to “admin” (to execute line 8) and not be equal to it (to evaluate
the right operand of the short-circuiting disjunction). JMODEX
handles such cases by trying to identify contradictions in guard
formulas. Additionally, JMODEX provides an API to integrate
satisfiability checkers for logical formulas.

3) Limitations and Other Features: Currently, JMODEX
cannot handle all Java constructs (e.g., polymorphic calls,
exceptional paths, collection usage, etc.) or every possible SQL
query. However, this does not hinder an initial evaluation of the
tool to check the feasibility and usefulness of model extraction.

During this assessment, we identified that abstracting library
or even application functions is critical to generating models
that are compact enough to be handled by the model checkers.
We have thus extended JMODEX with user-defined specifiers,
which enable analysts to describe programmatically how cer-
tain methods (or even individual method invocations) should
be analyzed during model extraction. The specifier mechanism
can be used to express the semantics of the JSP framework
methods in terms of the JMODEX meta-model, and could
thus be used to extend JMODEX for analyzing applications
built with other development technologies. We have also used
specifiers to under-approximate the behavior of functions (e.g.,
ignore filtering or sanitizing of strings) when searching for
logical flaws which are independent of these aspects.

B. ICONVERT – ASLAN++ Generation
In the second analysis step, JMODEX reduces the au-

tomaton/graph of each component using a structural analysis
algorithm, obtaining for each automaton a control tree [7].
This tree is expressed in terms of ASLAN++ control state-
ments and describes how statements are combined to produce
the semantics of the automaton operations. We have defined
translation schemas for each expression in the ISUMMARIZE
meta-model; they are used to generate the ASLAN++ code for
the guards and updates that fill the control tree. For example,
the automaton in Figure 2F can be reduced to an ASLAN++
select statement that non-deterministically selects a transition
with a true guard. Next, based on the translation schemas,
JMODEX produces the code in lines 10 to 27 from Listing 1
(except the user-specified assertion), filling the on conditions
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with the edge guards and the statement bodies with the edge
updates. Edges with no updates are eliminated if possible.

Finally, the ASLAN++ code of each component is inserted
on a distinct branch of another select statement (e.g., line 8
in Listing 1). The purpose of this select is to enable a user
(including an intruder) to access different components in every
possible order she can imagine. Finally, everything is enclosed
within the server infinite loop (e.g., line 7 in Listing 1).

IV. EVALUATION

For an initial evaluation of JMODEX we have used the
BookStore2 application in which we had manually detected
a security vulnerability (later found to be already known3).
The application has typical features for an on-line store (user
registration, information updates, shopping cart, etc.) and it
is developed using the JSP/Servlet technology. The security
vulnerability is that a regular user can change the password
of another user including that of the admin. In the following
we describe the steps we applied in order to identify this
vulnerability using the models extracted with JMODEX.

We start by extracting a model for the Login and MyInfo
components, which perform user login and personal informa-
tion updates. The corresponding JSPs have been converted in
pure Java code using Tomcat 6’s translator, obtaining around
1500 lines of code. We have also used JMODEX facilities to
simplify the application model, reducing its size to aid the
verifier. Consequently, we have captured only those execution
paths in which the request parameters exist (i.e., they are not
null in the application), we have considered some sanitizing
functions to be identities, etc. On a MacBook Pro computer
(2.53 GHz Intel Core i5, 8GB RAM) running OS X Mountain
Lion, JMODEX extracts in less than 30 seconds a model
with around 140 lines of ASLan++ code. After initializing
the model database and specifying the security requirement
that a regular user should be able to modify only its entry
in the database, we have verified the model using CL-ATSE.
Limiting the maximum execution count of each transition to 2,
CL-ATSE identified the attack in less than 10 seconds. Thus,
we have shown that the model extracted using JMODEX is
sufficient to highlight the initial vulnerability.

Next, we inserted an additional check in the MyInfo com-
ponent to eliminate the vulnerability. After extracting the new
model we re-ran the model checker, this time without finding
any attack on the security property. Moreover, on the corrected
application, the initial attack that changes the admin password
fails. This confirms that JMODEX has correctly captured the
behavior of the modified application in the new model.

V. RELATED WORK

Several other tools analyze application code to detect secu-
rity vulnerabilities caused by faulty application logic. WALER
[2] uses dynamic analysis to identify likely invariants and ap-
plies model checking over symbolic inputs to detect executions
that may violate these invariants. WAPTEC [1] uses a constraint

2http://web.archive.org/web/20110430192101/http://gotocode.com/
3http://www.securityfocus.com/bid/49910/exploit

solver and dynamic analysis to identify executions triggered by
user inputs that are rejected in the client side of the application
but are incorrectly accepted by the server side.

In contrast, JMODEX only builds an application model;
however, it is strongly linked to the model checkers used to
verify its security properties (CL-ATSE [3] and SATMC [4]).
It produces models expressible in their input specification
language ASLAN++, and uses abstractions geared towards the
features of this language and the checking algorithms.

BANDERA [8] has taken a similar approach of building
models of Java programs that can be analyzed by independent
model checkers. In comparison, JMODEX is not geared to-
wards verification of concurrency and data structure properties,
but produces models for model checkers that target security
aspects. Consequently, it needs to incorporate security domain
knowledge (e.g., about web applications and intruder actions),
and generate models that can be efficiently checked.

VI. CONCLUSION

We have presented JMODEX, a tool to automatically extract
behavioral models for web applications. The model is ex-
pressed in the ASLAN++ language and can be further used in
conjunction with a model checker to verify security properties.
Initial evaluation has showed that the tool can extract models
from small but realistic web applications, and that the extracted
models can be used to identify security vulnerabilities.

As future work, we plan to address the current limita-
tions presented in Section III. A special focus is to provide
more powerful abstraction/simplification mechanisms to ad-
dress scalability issues raised by model checkers. An important
ability would be to start from the security requirement to
be checked and automatically abstract away during model
construction all details that are irrelevant for the analysis goal.

ACKNOWLEDGMENT

This work has been supported by the European FP7-ICT-
2009-5 project no. 257876 SPaCIoS — Secure Provision and
Consumption in the Internet of Services

REFERENCES

[1] P. Bisht, T. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan, “WAPTEC:
Whitebox analysis of web applications for parameter tampering exploit
construction,” in Proceedings, 18th ACM CCS. ACM, 2011, pp. 575–586.

[2] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward automated
detection of logic vulnerabilities in web applications,” in Proceedings of
the 19th USENIX Conference on Security, 2010, pp. 143–160.

[3] M. Turuani, “The CL-Atse Protocol Analyser,” in Proceedings of RTA’06,
ser. LNCS, vol. 4098, 2006, pp. 277–286.

[4] A. Armando and L. Compagna, “SAT-based model checking for security
protocol analysis,” Int. J. of Information Security, vol. 7, pp. 3–32, 2008.
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