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Abstract

This paper presents an approach to use VHDL as input

specijicatwn to the CAIUAD high-level synthesis system. In

particular, it describes a synthesis-oriented compiler which

takes a subset of VHDL as input and compiles it into the

internal &sign representatwn of CAiUAD, which can then

be synthesized into register-transfer level &sign. Since

CAMAD supports the &sign of hardware with concurrency

and asynchrony, our VHDL subset includes the concurrent

features of the language. We present also in the paper some

important concl~”ons concerning how to deal with signals,
want statements, structured a%ta, and subprograms.

1. Introduction

VHDL [5] is one of the most widely used languages in
digital circuit design. The existing IEEE standard defines a
very rich language for hardware description and simulation.

However, the problem of extending the use of VHDL to the

field of hatdware synthesis does not have any definitive

solutions yet. Thete are even discussions on to what extent

VHDL is adequate as a synthesis language. The main

difficulty of using VHDL for synthesis is resulted from the
simulation-oriented semanties of standard VHDL; some of

the VHDL features cannot be synthesized and others ean

only be synthesized using very sophisticated hardware.
Therefore, it is quite obvious that a ttsefid and efficient high-
Ievel synthesis system shotdd accept only a subset of

VHDL, possibly with some synthesis-oriented extensions

which can be ignored when simulation is carried out.

In this paper we present a synthesis-oriented compiler

based on a broad subset of VHDL. We describe the
language subset, the internal design representation based on

an extended timed Petri net model, and the implementation
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of the compiler as part of the CAMAD high-level synthesis

system developed at Linkdping University [9]. One of the
main issues addressed in this paper is how to capture the

VHDL semantics by our design representation. Our

approach differs from most of the other VHDL synthesis
projeets by considering a wider class of VHDL descriptions
and dealing with synthesis of eoncument processes.

The paper is divided into six sections. Section 2

disettsses some previous work on VHDL synthesis and

outlines our approach. Section 3 presents the internal design

representation used in our synthesis system. Section 4

describes the compilation of the selected VHDL subset into
the internal representation together with a discussion of
some semantic aspects of the VHDL subset. Finally section

5 deals with the implementation of the compiler and section
6 presents our conclusions.

2. Background and Related Work

The most difficult and widely discussed features of

VHDL, from the point of view of synthesis, are the timing

model, concurrency and synchronization, and subprograms.

However, most previous work makes use of only the

sequential aspects of VHDL. For example, in [3],

Camposano assumes that the behavioral hardware
specification ertptured by VHDL is sequential and only a

synchronous hardware is synthesized. Thus, sensitivity

clauses of the wait statements are ignored and wait on
signals is not allowed. VSYNTH, the behavioral synthesis

system deseribed in [4], is another example of using a

VHDL subset that is restricted to a purely sequential
description. As in Carnposano’s work, the architecture body
may only contain a single prccess. No wait statement is

accepted.

Bender and Stevens [1,2] point out that a VHDL

description is difficult to synthesize efficiently, mainly
because of the low level synchronization and
communication concepts based on signals. To overcome
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this difficulty they replace the signal concept by several

other concepts representing different synchronization and

communication facilities. By doing this, putctically a new
language with a different semantic is defined.

In [10] Posttda describes SynVHDL, a subset of VHDL

for high-level synthesis. It is defined based on the

assumption that a design will be described as a set of

-Sses to be SYdEized one at a time. Each process will
result in a separate synchronous hardware module. In

SynVHDL an architecture body contains a single process,

and wait statements are allowed to have only a clcck signal
on their sensitivity lists. No subprograms are allowed.

In [6] Lis and Gajski propose a methodology to cope

with the difficulties of VHDL synthesis. Their approach

tiers in some way from those discussed above; instead of
imposing restrictions directly on the language, they define
four design models and recommend for each model a

corresponding description style. The compiler embodied in

their system works in four different modes according to the
corresponding VHDL descriptions.

The work discussed above usually integrates VHDL into

a high-level synthesis environment by imposing restrictions

on the language. The authors try to solve the basic problem

of interpreting VHDL’S semantics in the world of synthesis,

by excluding some strictly simulation-oriented facilities

from the language. Their methods usually synthesize only

one part of the VHDL description without considering its
relation with the rest. Most of these systems restrict

themselves to a practically sequential subset of VHDL, with

a very nwtricted use of signals.

Our approach is to accept for synthesis a larger subset of
standmd VHDL, which we called S’VHDL. When defining

the subset we eliminate tirst of all facilities which are

ambiguous (for instance those related to timing) or

irrelevant (those connected to structural description, access
types, etc.) from the point of view of high level synthesis.
The overall structure of a program in S‘VHDL comprises
entity declarations, architecture bodies, package

declarations and package bodies with the following

propertietx

● an architecture body may contain any number of

concurrent statemen~,

● scalar and composite types, with the exception of

access and file types, are accept@

● signals can only be of scalar or bit-string typq
● recursive calls are not allowed in procedures;

. all sequential statements, with the exception of the

assertion statements, are accep@ and

- the structural aspects (such as component
instantiation or generate statements) are excluded.

We have implemented a compiler which takes a digital

system specification in S’VHDL and generates an internal

design representation. The compiler is designed as part of

the CAMAD system, which synthesizes the internal

representation into a register-transfer level design.

3. The ETPN Design Representation

The internal design representation of CAMAD is called

ETPN (extended timed Petri net) [7, 8], which has been

developed to capture the intermediate results during the
high level synthesis process. The representation model is

based on two separate but @ated parts control and data

part. The representation uses Pern nets to provide a

concurrent and asynchronous description of (control.

The data path of the design representation is represented

as a directed graph with nodes and arcs. The nodes are used

to capture data manipulation and storage units. The arcs
represent the connections of the nodes. The control part of

the design representation, on the other hand, is captured as

a timed Petri net with restricted transition firing rules. These

two parts are dated by the control signals coming from the

control part to the data path, and the condkional signals

traveling in the opposite direction.

In the examples throughout the paper, data path nodes

will be represented as rectangles with labels indicating the
functions of the nodes or their names (if the node is a

register). The arcs of the data path represent the data flow

between function nodes. Communication of data from one
node to another is controlled by the control signals coming
from the control parL The control relation is indicated by

using control state labels to guard arcs. When a control state

S, in the Petri net representing the control flow, holds a

token, its associated arcs in the data path (arcs guarded by

the corresponding label) will be open for data to flow.

Control states or places of the control Petri net will be
depicted in our examples as circles. The transitions of

control states are represented as firings of one or several

transitions of the Petri net, which are depicted as bars. To
express that the control flow can be guarded by results of

internal computations, we use conditional signals to guard

the control flow. A transition may be guarded by one or

more conditions produced from the data path. A transition

may be tired when it is enabled (all its input places have a

token) and the guarding condition is true. If a transition has
more than one guarding condition and at lca.t one of them
is true, the transition’s guarding condition is Wue.

4. Compilation of S’VHDL to ETPN

In this section, we present the compilation of the selected
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VHDL subset into the ETPN design representation

discussing how certain basic S’VHDL constructs can

represented in the ETPN model.

4.1 Wait Statements and Signal Assignments

by

be

In VHDL the wait statement can have three basic forms.
‘IWO of them, namely “wait for” and “wait until” are

relatively easy to be reprewtted in ETPN while “wait on”

statement cause problems. In this section we will

concentrate mainly on “waiting on events and transactions”
while other forms will be briefly discussed later.

A wait statement on a signal in a S’VHDL prtxess will

result in suspending the process until an event on the
specified signal occurs. Such an event occurs when the
signal changes its value as the result of an assignment

statement. In Fignm 1, we show how the wait statement (a)

and the signal assignment (c) are represented in ETPN.

Waiting for an event is solved by associating the condition
C, to a transition in the waiting process. The condition C,

will be produced as result of an assignment to the respective
signal, if the value of the signal changes. For reasons of

simplicity we will use a compressed representation for
signals (equivalent to that in Figure l(c)) as illustrated in
Figure l(d).

wait ons wait on s’transaction

Ci Cstf

(a) wait on event (b) wm”t on tran.wxtion

s <= . . . .
,/ --------; -” “--------- ..
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/S2

/

:
# s

;

:

m S3:s
,:

e
:, S3:
‘.
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$. . s

-)—
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(c) signal assignment (d)’’ compressed representation

Fg. 1.Wait on signals and signal assignments

A process can also wait for a tmnsaction occurring on a

signtd. A transaction happens whenever a value is assigned
to a signal regardless if its value changes or not. This is

done, in VHDL, by referring explicitly to the attribute

transaclwn of the given signal, as illustrated in Figure l(b).

Figure l(c) shows also how the condition C~,l,

corresponding to s’transaction, and the value of

s’transaction (s’t) are generated. The condition C~,l is true
(1) whenever a value is assigned to the signal. When

generating the value of the attribute transaction of a signal

s, we followed the semantics defined for VHDL. It means

that ifs is a signal of any ~, than s’transaction is a signal
of type bit, whose value changes to the inverse of the
previous one whenever a value is assigned to signal s. In

Figme l(c) we depicted also the initialization of

s’transaction, by an initial state W.

wait on 51,s2 until c

c,~,c,z

(j

evaluation of c ;

c-

Fig. 2. Wait statement with sensitivity and condition clause

A process can wait not only on a sensitivity list

consisting of one or more signals, but also on a condition.
Sensitivity lists and condition clauses can appear together or
alone in a wait statement. An example of such wait

statements is given in Figure 2, where the control Pern net

corresponding to a wait on a sensitivity list containing two

signals, and a condition clause is shown. According to the
VHDL semantics the ETPN representation will have the

transition guarded by conditions C~l and C~2 corresponding
to the signals sl and S2 followed by the transitions guarded

by C and not C, which correspond to the condition clause.

4.2 Subprograms

There exist different approaches to &eat subprograms in

a high level synthesis system. The main problem is wether
to preserve their structural meaning and synthesize them as

separate pieces of hardware, or to expand them in the calling
process. We used both approaches in our system.

In Figure 3, we show the control Petri net (a) and the
interface data path (b) for a VHDL example containing two
successive Galls of the same procedure p. The dotted lines
indicate the control transfer at procedure call and return.
The data path corresponds to the VHDL semantics of

parameter transfer for variable and constant parameters. It
represents the assignment from the actual parameters to the
formal ones at the call for in and inout parameters, and the

assignment from the formal parameters to the actual ones at
return for out and inout parameters. Since procedures are

called sequentially from one process the data path will not
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(a) control Petri net

Fg. 3. Procedure calls

(b) data path

In the ease of subprograms in-line expansion, we have in

fact as many subprogram bodies as calls, and there is

practically no call and return in the resulted hardware. In the
other ease when subprograms are synthesized separately
and accessed at each call, there arise additional problems.

One is related to the fae4 that the return must occur to

different points, depending on where the call esrne from. It
is in fact the problem of saving the return address. In our

case we solve it by using conditions Cl and C2 generated by

the data path to guide the control transfer, as shown in

Figute 3 and 4.

1. .2

‘“HIt
Fq. 4. Saving the caller’s identity and generating the return

conditions

Another problem is the concurrent procedure cdl when

subprograms are shared between processes. In Figure 3 we

considered that the two procedure calls originate from the
same pmeess and consequently are strictly sequential. This
is always the ease with subprograms deelared inside a

Process, and consequently not visible outside it. If a
subprogram is called by more than one process and it is

expanded, eaeh process will execute its own copy of the

subprogram body and there are no pmblelms related to

sharing. If the subprogram would be synthesized as a single

piece of hardware, it would be necessary to protect it against

being entered by more than one process at a time. In

principl~ this problem cart be solved by using mutual

exelusion mechanisms and transforming procedures into

critical resources. This can mstd~ however, in a undesirable

situation which ean cause deadlock. We illustrate the
problem with the following example,

slgrtal s:integec+, process process

procedure p(xinteger) is

. . . . . . . . piii;. ..” “’””’p(2);
if x=1 then . . . . . . . . s<=. . .

waits; end process; . . . . . . . .

. . . . . . . . end process;

end p;

When using VHDL for simulation, there is no problem

with the above example. The simulator accepts multiple

activations of a subprogram. But if subprograms are
implemented as hardware modules and are proteeted for

multiple activations, and the call p(1) is executed firs~ the

two processes will deadloek. Such a deviation from the

standard VHDL semantics cannot be aeeepted. This is a

strong argument to perform in-line expansion of

subprograms that are called from mom than one process.

An additional care must be devoted to subprogram

parameters of the signal type if the subprogram is not

expanded. According to the VHDL semantics, the actual

signal is associated to the formal one at the beginning of
each call; thereafter, during the execution of the subprogram
body, a reference and an assignment to the formal parameter
is equivalent to a reference or assignment to the actual one.

To resolve possible conflict due to the access to the actual

signal, we can use the same method we usad to solve the
problem of returning from subprograms.

In our approach, the programer has the possibility to

choose if helshe wants a subprogram to be expanded or to

be synthesized separately. If there is no information given

from the progratner the system will make a clecision based

on program analysis results. No matter which alternative is

chosen, in order to maintain the knowledge of the initial
structttm, from the source program to the internal

representation, components of the control net and the data

path are labeled with attributes indicating the processes,

subprograms, and blocks they belong to.

4.3 Timing Model

Due to the simulation-oriented definition of the
semantics of standard VHDL, it is assumed that all

statements between two wait statements are executed in
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zao time. This assumption can not be implemented in

hardware. The VHDL @er clause in a signal assignment
specifies also a strict simulation delay time, which is
impossible (and useless) to be synthesized exactly in

hardware. The same applies to the time clause in a wait
statement. To make it possible to consider timing
information during the synthesis process, we interpret the

timing model of S’VHDL as follows:

● the ufter clause in a signal assignment represents a

maximal allowed delay of the synthesized hardware

which is used to carry out the respective assignmen~

● await with a time clause specitles the minimrd delay

from the previous wait statement.

The timing model of VHDL is also relevant to signals
and their handling. Unlike variables, which are updated as

soon as they are assigned, signals are only updated at the

end of a simulation cycle. This means tha~ after an

assignment, a signal preserves it’s old value until the next
wait is executed. We believe that this semantics, strictly
connected to the VHDL simulation model, should not be
preserved for synthesis. We have decided to update signal

values after assignments in the same way as variables. This

means that a S’VHDL signal assignment is semantically

equivalent to a VHDL signal assignment followed by a wait

for O statement.

5. Implementation of the S’VHDL Compiler

The S’VHDL compiler is implemented as part of the

CAMAD system. CAMAD generates the structural

description of a digital system, starting from a high level
specification. CAMAD acts like the front-end of a complete

VLSI synthesis system, as shown in Figure 5(a). The

S’VHDL compiler described here is intended to work as a

front-end for the CAMAD. It translates a S’VHDL

description into an ETPN repnxsentation.

The high level description of a digital system in S’VHDL

Front End

represents a behavioral specification which describes the

functionality of the circuit. Figure 5(b) shows how the

S’VHDL source program is successively translated to the
ETPN internal form. Between the extemat source and the
final ETPN, the program passes two internal intermediate
fornxx the program graph and the data flow description.

These successive representations are illustrated for
following program:

package pae fs arehttectttre a of ent is
procedure w procedurep(i:in integer)is

the

end paq

package body pac is

constant ahteger:= 3;

procedure p is

variable x,yintegw,

begin
x:=a+l;

y=x*2;

. . . . .

end w

end paq

entity ent is

port (@integw, poueout bit);

end en~

begin

psc.~

. . . . .

end p;

stgnal s:integer:= O;

begin

process (s)

variable v:intege~

begin
V:=s-l;

p(v);

pout<=’’l’”;

. . . . .

end process;

S<=pin+l ;

. . . . .

end w

The fist pass of the compiler does a complete syntactic

and semantic analysis of the S ‘VHDL specification and

transforms it into an internal form called program graph. A
program graph consists of trees corresponding to the

syntactic structure of the statement parts in the program and

additional nodes. These nodes represent declared objects on
which the statements operate.

The second and third pass of the compiler perform

structural transformations on the generated program graph

and, at the same time, some high level optimization. The

dataflow description generated by the second pass reflects

\

‘u’ (a) VLSI synthesis process in CAMAD
,s . . . . . . .

. ..

O-O-CH3+(=Jdataflow
ETPN / Congo >

S’VHDL arudysis program
psrsllelizer

synthesis data flow
op~ generatlog etn ne j#

specification data flow
8

:
graph high level description .gh level description to data !

optimization optimization %4.0- patb ,/
...zz .../

Fig. 5. Overview of CAMAD and the SVHDL compiler (b) The S’VHDLfioti end
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the flow of data through the program at the level already

corresponding to the constructs supported by ETPN. As

such, the transformations performed in the second pass are

aimed at eliminating some high-level constructs still present
in the program graph. One example of such transformation
is to expand processes into Petri net loops. Passes two and

three perform also, to some degree, extraction of parallelism
and high-level optimization (such as constant folding,
eliminating common subexpressions, and code motion).

X
.in 1

% 21 21
+

S21 ()

Sc
. s

c’
S21 11 :1

rr

L-J
1s11

1

+

S13

.

Sl;t
c pout

~

v

S12

of procedure p
to psrsmetw i

@

a) data path b) control Petri net

Fq. 6. Example of ETPN generated by the compiler

Finally, the last pass of the compiler transforms the

dataftow description into ETPN, generating the
corresponding data path and the control Petri net. Figure 6
shows the ETPN representation corresponding to the
process and the concurrent signal assignment in the given

program example. Some of the solutions discussed in

section 4 for wait statements, signal assignments and

procedure calls can be recognized here. Note the initial state

S0 in Figure 6 controls initialization of global variables and

signrds, and provides the initial token to all processes.

6. Conclusions

This paper presents a VHDL compiler for the CAMAD
high-level synthesis system. We have described the

language subset accepted by the compiler, the internal
representation used, and the overall structure of the

implementation. Based on the fact that CAMAD supports

the design of hardware with concurrency and asynchrony,

our VHDL subset includes the concurrent features of the
language. We have found that ETPN, the internal

representation defined for CAMAD, can be used as a target

representation for VHDL constructs. Some important
problems and solutions concerning how to deal with signals,
wait statements, and subprograms, from the specific point of

view of synthesis, are presented.

Certain aspects of VHDL semantics are strictly

simulation-oriented and should be redefined or ignored
when dealing with synthesis. They include the ufter clause
in signal assignments, the time clause in wait statements,

and the way signal values are updated after assignments. We
have presented several modifications of VHDL, semantics in
respect to these constructs in the paper, which makes it

possible to synthesize them directly into hardware.
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