
Automatic Inference of Model Fields and their
Representation ∗

Mihai Balint
Dept. of Computer and Software Engineering
Politehnica University of Timişoara, Romania

mihai@cs.upt.ro

Marius Minea
Dept. of Computer and Software Engineering
Politehnica University of Timişoara, Romania

marius@cs.upt.ro

ABSTRACT
Automatic mining or inference of formal specifications from
program source code is a desirable goal for documentation
and verification purposes. However, current approaches that
generate invariants, pre- and post-conditions, procedure sum-
maries and sometimes also class invariants have mostly fo-
cused on extracting specifications from concrete method bod-
ies. Consequently, almost all results have a low level of ab-
straction that is very close to the analyzed source code.

We use JML model fields to raise the abstraction level of
such automatically generated specifications, relying on the
constraints imposed by behavioral subtyping. Starting from
several derived classes we attempt to generate model fields
for the supertype and represents clauses for each subtype.
The relations between concrete and model fields are gener-
ated by checking the validity of predefined patterns against
the specifications of subtype methods. Our prototype tool
uses as inputs specifications generated with dynamic anal-
ysis (Daikon), identifies model fields and their representa-
tions, and generates specifications for supertype methods.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tions; D.2.4 [Software Engineering]: Software / Program
Verification

∗This work was partially supported by the Romanian Na-
tional Research Council (CNCSIS) under project “Methods
and Tools for Continuous Quality Assurance in Complex
Software Systems” (PN II-IDEI 357/1.10.2007) and by the
strategic grants POSDRU 6/1.5/S/13 (2008) of the Ministry
of Labour, Family and Social Protection, Romania and POS-
DRU/21/1.5/G/13798, co-financed by the European Social
Fund - Investing in People. We would also like to thank
Google for funding a travel grant that enabled Mihai Balint
to attend the conference and present this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0893-9/11/07 ...$10.00.

Keywords
automated specification mining, model field inference, speci-
fication inference, type inheritance, object-oriented software

1. INTRODUCTION
Automatic inference of formal specifications for programs

is highly desired, as manual specification is intellectually
intensive and error-prone. Software size and complexity not
only makes specification inference more difficult, it can also
lead to specifications that are themselves complex, difficult
to understand and manage. Ideally, inferred specifications
should raise the level of abstraction, expose commonalities
in type hierarchies and observe representation independence.

For Java, the JML [19] specification language enables for-
mal specification while preserving the inherent flexibility
achieved in object-oriented software through encapsulation
and implementation hiding. In JML specifications, informa-
tion hiding is enabled through the use of model fields. These
fields exist only in the specification and are used at verifica-
tion time. Their role is to create an abstraction of a set of
concrete fields, applicable to the given type and its subtypes.
Using this abstraction, verifiers can reason about program
behavior while implementation details remain hidden.

Thus, the most important use case for model fields to-
gether with type inheritance is to enable modularity and
preserve encapsulation in the verification process. For ex-
ample, Ruby and Leavens’ subclassing method [24] uses only
formally specified interfaces, without any information about
the implementation (method bodies) of the base class.

While being a powerful specification instrument, model
fields have been largely unused in the specification infer-
ence and program summarization communities. Hence, tech-
niques that infer JML-like specifications, e.g., the pattern
based approaches of Flanagan and Leino [14] and Ernst
et al. [13], the later improvements by Kuzmina et al. [18],
and the symbolic execution variations of Csallner et al. [10],
Chandra et al. [7] have been most successful when the con-
tents of the method body is available.

Conversely, when method bodies are unavailable (e.g., for
abstract classes and interfaces), specifying abstract members
for class hierarchies has been mostly handled by quantifi-
cation of subclass-specific information, e.g., the attempt of
Goldstein et al. [15] at specification refactoring, which some-
times results in methods with unsatisfiable preconditions.

When only interface definitions are available, specifica-
tion mining research has found that generating automata to
model behavior is more useful for the goals of software en-
gineering, hence the proliferation of techniques like the ones

presented by Alur et al. [1], Shoham et al. [25], Weimer et
al. [26] and Dallmeier et al. [11]. Previously, we have also
proposed an automata based approach [2] which inferred
super-class specifications; here, we use these ideas to im-
prove the expressiveness of inferred JML specifications in
the case of abstract classes and interfaces.

In this paper, we explore the idea of model field inference.
Starting from several classes with method specifications, we
automatically infer model fields and formulas for the repre-

sents clauses of each derived class. Model fields allow us to
rewrite method preconditions and summaries at a more ab-
stract level, with fewer references (ideally absolutely no ref-
erences) to concrete fields. Next, we obtain method specifi-
cations for the base class that observe the rules of behavioral
subtyping. The end result is a set of specifications which are
simpler and easier to understand, and where model fields
preserve encapsulation and expose the common behavior of
the class hierarchy.

2. MODEL FIELD INFERENCE
In this section we briefly describe model fields, then ex-

plain the procedure used to validate potential represents
relations against subtype specifications.

2.1 JML Model Fields
Model fields (also called abstract variables in [20]) en-

able the specification of behavior without referencing actual
implementation-specific data. This feature preserves encap-
sulation and allows formulation of specifications at a higher
level of abstraction.

Each model field has a representation which defines its
relation to real fields or other model fields. In JML this
is specified using represents clauses which can have two
forms, a functional form that directly defines the model field
using an equality =, or a relational form indicated by the
keyword \such_that. The functional form defines the rep-
resentation of the model field as a function of other (real
or model) fields and is the most commonly used. The rela-
tional form is more general and defines the possible values of
a model field given a certain program state using the Boolean
expression specified after the \such_that keyword. A com-
plete formal semantics for model fields, based on Hilbert’s
ε-terms is under development [4].

An example of model field declaration and representation
within a hierarchy is presented in Listing 1 using the JUnit
example from [3] annotated with JML specifications.

2.2 Inferring model field representations
Overall, the inference starts by targeting a certain base

type (either base class or interface) and assuming the ex-
istence of a model field with representations in each of the
derived types. The represents relation is chosen from a list
of predefined patterns and is validated against the specifica-
tions of all methods defined by the supertype and specified
in terms of concrete type fields (as typically produced with
current automated specification mining techniques).

Formally, given a base type T and subtypes Si, each declar-
ing a tuple of real fields xi and a relation Ri(mf , xi) which
defines a potential representation of model field mf in each
subtype, we can check the validity of each Ri by verifying
the satisfiability of formula (1) against the preconditions PSi

and the procedure summaries QSi of the subtype implemen-

tations mi for all methods m declared by T .

(
∧

Si≤T

PSi(xi, yi, p) ∧Ri(mf , xi)) ⇒

∧
Si≤T

(∀x′i.QSi(xi, yi, p, x
′
i, y
′
i, p
′)⇒ ∃mf ′.Ri(mf ′, x′i))

(1)

We assume that the procedure summaries include the pre-
condition constraints. We distinguish (tuples of) concrete
fields xi that appear in the model field relation Ri and the
remaining concrete fields yi that don’t. Preconditions and
summaries are expressed in terms of fields xi, yi and pa-
rameters p. Primed variables correspond to the post-state.
Formula (1) validates a potential correlation between the
real fields of all implementations, ensuring that for any out-
come of real fields x′i there is a corresponding value mf ′ of
the model field which preserves the desired relation Ri.

By assuming the conjunction of preconditions we ensure
the weakest possible safe context from which all method
implementations can be called (behavioral subtyping [21]).
Also, we avoid unsafe strengthening of the postcondition by
checking the validity of the model field representation in
the post-state independently for each subtype. Subtyping
constraints are used here because our goal is to raise sub-
type specs to an abstraction level which enables their use
as supertype specs, thus we only care about the validity of
represents relation within these requirements.

We obtain the actual represents relations using a reposi-
tory of possible patterns which we instantiate with different
real fields declared by subtypes. The complete algorithm is
listed in pseudo-code below.

Algorithm 1 Find model field representations

for all P ∈ pattern repository do
for all Si subtypes of T do

for tuples F of Si fields matching P do
Ri,j ← instantiate P with F
add Ri,j as a potential represents relation for Si

end for
end for

end for
for all tuples M of relations Ri,j across the set {Si} do

keep M if all its relations satisfy equation (1)
end for

At the end of Algorithm 1 we obtain all represents rela-
tions which have been validated for the given set of subtypes.
In some cases, instantiating a relation pattern and validat-
ing it may be partly merged, as is the case with linear arith-
metic relations for which after instantiation we must infer
valid numerical coefficients.

Depending on the variety of patterns in the repository, Al-
gorithm 1 may generate model fields and representsrelations
which model the same program state at different levels of ab-
straction, according to which patterns fit. This may result
in specification spam, with multiple potential specifications
for a super-class. For safety reasons, we do not throw away
any of the generated fields and propose that (1) either the
program maintainer makes an informed choice for a certain
version or (2) when a program property must be proved, all
specifications should be tried and the ones which satisfy the
property be attached as preconditions to the proof.

Because inheritance is used in Java both for subtyping and

implementation reuse, we require that each method which
was given an implementation within the supertype be spec-
ified separately for each subtype. This requirement is due
to the fact that such methods may polymorphically alter
the specific state of subtypes. Omitting these modifications
from specifications hinders the effectiveness of our approach,
however this type of specification only makes sense in the
context of subtypes as it refers to subtype-specific variables.

3. ABSTRACTION
In this section, we discuss the methods by which the gen-

erated represents relations for model fields can be used as
vehicles for abstraction. This includes the inference of more
abstract specifications for the subtypes, eliminating concrete
fields, and the generation of formal specifications for the su-
pertype, using the behavioral subtyping relation [21].

3.1 Abstraction of subtype specifications
Once a model field and valid represents relations are

identified we can remove implementation-specific details from
subtype specifications. The goal is to obtain method speci-
fications (preconditions and procedure summaries) that ref-
erence as few fields declared in the subtype as feasible, em-
ploying instead model fields where possible.

Formally, for preconditions this means computing the quan-
tified formula below, where R(mf , x) is the represents re-
lation for model field mf , PS(x, y, p) is the precondition ex-
pressed in terms of subtype fields and method arguments,
and P ′S(mf , y, p) is the precondition expressed in terms of
model fields and method arguments.

P ′S(mf , y, p) = ∃x.R(mf , x) ∧ PS(x, y, p)

For the procedure summary Q′S(mf , p,mf ′, p′), the formula
is similar, while accounting for both pre-state and post-state
versions of the fields and the method parameters.

Q′S(mf ,y, p,mf ′, y′, p′) =

∃x, x′.R(mf , x) ∧R(mf ′, x′) ∧QS(x, y, p, x′, y′, p′)

In both of the above formulas, existential quantification is
only performed over the concrete fields x that appear in the
represents relation R; the results may still depend on other
(possibly subtype specific) fields y.

We can perform a further round of abstraction by replac-
ing the equivalence relations with implications. To maintain
safety, we strengthen the precondition (equation 2) while
weakening the procedure summary (equation 3).

P ′S(mf , y, p)⇒ ∃x.R(mf , x) ∧ PS(x, y, p) (2)

Q′S(mf , y, p,mf ′, y′, p′)⇐
∃x, x′.R(mf , x) ∧R(mf ′, x′) ∧QS(x, y, p, x′, y′, p′)

(3)

In practice, abstractions could involve eliminating concrete
fields y which R does not relate to the model field, using
universal quantification to strengthen the precondition and
existential quantification to weaken the method summary.

3.2 Generating supertype specifications
For each method defined in the supertype, we use the pre-

conditions and procedure summaries of its implementations
in the various subtypes to generate an appropriate specifica-
tion in the subtype, while observing the rules of behavioral

subtyping. For a method m defined in supertype T and im-
plemented in two subtypes S1 and S2, behavioral subtyping
enforces the following constraints on the preconditions and
postconditions of the implementations of m:

PT ⇒ (PS1 ∧ PS2)

(QS1 ∨QS2)⇒ QT

To generate specifications for m as defined in the supertype,
we replace the implications with equivalence. In general,
for N subtypes we define the precondition and summary of
method m using equations 4 and 5 respectively.

PT (mf , p) =
∧

Si≤T

∀yi.PSi(mf , yi, p) (4)

QT (mf , p,mf ′, p′) =∨
Si≤T

∃yi, y′i.QSi(mf , yi, p,mf ′, y′i, p
′) (5)

After the application of the generalization technique from
section 3.1 it is usually the case that subtype specific fields
(i.e., yi) are still referenced within the specification. This is
caused by implementation dissimilarities which could not be
modeled in a uniform manner using the selected represents

relations. These fields have no meaning in the context of the
supertype and are eliminated using quantification.

At this stage, the precondition PT of method m for type
T may become unsatisfiable either because of the universal
quantification or because there exists no value of mf which
satisfies all subtype preconditions. This is a sign that the
method cannot be uniformly invoked across all N subtypes
and as such this hierarchy violates the Liskov Substitution
Principle [21]. Empirical observations [22] have shown this
situation to be quite common but also offer an insight: the
offending subtypes are either few or are clustered in places
where the hierarchy lacks intermediate types. In this latter
case the goal consists of finding subsets of subtypes for which
PT is satisfiable and adding new intermediate types to the
hierarchy. Similarly, QT may become universally satisfiable,
a case which also points toward poor hierarchy structuring
and potential software design problems.

Sometimes Java inheritance is used simply for code reuse
by placing common code within a base class. It can be diffi-
cult to differentiate between inheritance for code reuse and
inheritance for subtyping. In the former case the results of
our approach would be meaningless, as such“derived”classes
are not intended for use through their base class interface. A
good heuristic for identifying code reuse through inheritance
relies on the observation that the base class is not used for
any other purposes (i.e., for variable declarations). Unfor-
tunately, in practice these two uses of Java inheritance are
sometimes mixed: some base class methods exist purely for
code-reuse, while others belong to the type hierarchy. These
cases occur mainly because design discipline is not enforced.

4. PROTOTYPE IMPLEMENTATION
We have implemented our approach in kaisō, a prototype

tool which given a Java class attempts to identify in non-
abstract derived classes the representations of a model field.
If valid representations are found, the specifications of all
methods declared by the base class are given in terms of the
identified model field and the visible real fields (i.e., fields
not declared within derived classes).

The tool uses as input the procedure summaries generated
through dynamic analysis with Daikon [13] with a modified
front-end for bytecode instrumentation and execution mon-
itoring. We are currently developing an interface for proce-
dure summaries generated through symbolic execution and
other static analyses.

Our prototype supports as relation patterns equality and
linear arithmetic relations with arbitrary numeric coefficients.
We have developed a module which identifies the coefficients
of a potential linear relation by generating tests with con-
crete values satisfying the given procedure summaries.

For linear arithmetic relations, validity checking and co-
efficient discovery are fused since test generation relies on
many of the same assertions as validation. Coefficient iden-
tification relies on proving that real fields from derived types
change in linearly related ways. Solving systems of linear
equations, we identify the real field coefficients, while the
constant field is found using the specifications of other meth-
ods (usually field setters). The advantage of this technique is
that its performance is predictable: the number of required
tests depends on the number of analyzed real fields. The dis-
advantages are (1) it requires methods that mutate object
state and (2) the constant coefficient can only be identified
using a different method. These limitations may be over-
come by using copy-on-write methods instead of mutator
methods, if we identify the source and destination objects.

To achieve a high level of automation and performance
our current implementation uses the Yices SMT solver [12]
for test generation as well as the rest of our proving require-
ments. The drawback is that the expressiveness of the used
specifications and represents relations is limited. To suc-
cessfully generate specifications for supertypes we currently
limit represents relation patterns to invertible functions (or
invertible systems of equations) which can be trivially used
to define real fields in terms of model fields using functions
that can then be reused to obtain equations 2 and 3. This
limitation could be avoided using a more general theorem
prover to replace the SMT solver.

4.1 Experiments
To test our prototype implementation we have used the

test suite developed as a JUnit showcase in [3] to generate
specifications for two classes and model fields for the inter-
face implemented by the two classes.

Listing 1 depicts part of the annotated IMoney type hier-
archy. The IMoney interface specifies the model field coins

which is an abstraction of the total number of money units
contained by a certain object. One implementation, the
Money class, holds a certain amount of money in a given
currency and provides a functional representation for the
coins model field. The second implementation, MoneyBag,
holds a list of IMoney objects and provides a relational rep-
resentation for coins. In this example the relation is total
and one-to-one and could trivially be written in functional
form; however, this need not be the case in general.

The test suite was instrumented and executed using the
Daikon invariant detector. The generated specifications for
Money and MoneyBag were then analyzed using kaisō which
correctly identified a model field that could be used in the
IMoney interface and its represents relations in Money and
MoneyBag. The results are depicted in Table 1.

Using the inferred represents relations and assuming that
the inferred model field is named coins it is trivial to refine

pub l i c i n t e r f a c e IMoney {
//@ p u b l i c i n s t a n c e model i n t c o i n s ;

/∗ Adds a money to t h i s money . ∗/
/∗@ en s u r e s \ r e s u l t . c o i n s =

@ t h i s . c o i n s + m. c o i n s ;
@∗/

pub l i c IMoney add (IMoney m) ;
. . .

pub l i c c l a s s Money implements IMoney {
p r i v a t e i n t fAmount ;
p r i v a t e S t r i n g fCu r r en c y ;
//@ r e p r e s e n t s c o i n s = fAmount ;

. . .

pub l i c c l a s s MoneyBag implements IMoney {
p r i v a t e L i s t<Money> fMon ies ;
/∗@ r e p r e s e n t s c o i n s \ s u c h t h a t

@ c o i n s == (\ sum i n t i ;
@ 0 <=i && i<fMon ies . s i z e () ;
@ fMonies . ge t (i) . fAmount
@) ;
@∗/

. . .

Listing 1: Money hierarchy example

Table 1: Model field relation for the IMoney hierarchy
supertype: IMoney represents relation for mf

subtype: Money mf − fAmount = 0
subtype: MoneyBag mf − sum(fMonies.get(i).fAmount) = 0

the initially generated specifications by replacing references
to fAmount and sum(fMonies.get(i).fAmount) with refer-
ences to coins. Sample resulting specifications for MoneyBag
are shown in table 2 compared with the results obtained with
the Turnip tool of Kuzmina and Gamboa [17].

In the specifications obtained using Turnip for method
add(IMoney m), references to subtype fields are guarded us-
ing type checks, although conceptually the specifications ex-
press the same thing. Using the coins model field within
these specifications we avoid referencing real fields from Money

and MoneyBag, which means that the type checks become re-
dundant and can be removed, reducing the postcondition of
add(IMoney m) to a single line.

For the subtract(IMoney m) method, Daikon filters out
some potential invariants because the number of tests is in-
sufficient for its default confidence threshold. This causes
the specification generated by Turnip to cover only three
of the four possible combinations of parameter and return
types. By considering all invariants which have not been
invalidated, kaisō is able to produce an improved postcondi-
tion which covers all four type cases.

4.2 Validity
As with all automated techniques, the meaning of the gen-

erated model fields may be questionable. The represents

relations from each derived class only provide limited hints,
however, the conceptual abstraction step remains a burden
for the developer. In the Money and MoneyBag example, does
it make sense to sum up amounts of different currencies?
And what does that sum represent? In our opinion such
questions are better left for software architects and designers

Table 2: Specifications for the MoneyBag class
Method IMoney add(IMoney m)

Turnip Postcondition (m.class = MoneyBag ∧ return.class = MoneyBag)⇒
(m.fMonies[].sum − return.fMonies[].sum + this.fMonies[].sum = 0)

(from [17]) (m.class = MoneyBag ∧ return.class = Money)⇒
(m.fMonies[].sum − return.fAmount + this.fMonies[].sum = 0)
(m.class = Money ∧ return.class = MoneyBag)⇒
(m.fAmount − return.fMonies[].sum + this.fMonies[].sum = 0)
(m.class = Money ∧ return.class = Money)⇒
(m.fAmount − return.fAmount + this.fMonies[].sum = 0)

kaisō Postcondition m.coins − \result .coins + this.coins = 0

Method IMoney multiply(int factor)

Turnip Postcondition (return.class = MoneyBag)⇒
(return.fMonies[].sum = this.fMonies[].sum ∗ factor)
(return.class = Money)⇒
(return.fAmount = this.fMonies[].sum ∗ factor)

kaisō Postcondition \result .coins = this.coins ∗ factor)

Method IMoney subtract(IMoney m)

Turnip Postcondition (m.class = MoneyBag ∧ return.class = MoneyBag)⇒
(m.fMonies[].sum + return.fMonies[].sum − this.fMonies[].sum = 0)
(m.class = MoneyBag ∧ return.class = Money)⇒
(m.fMonies[].sum + return.fAmount − this.fMonies[].sum = 0)
(m.class = Money ∧ return.class = Money)⇒
(m.fAmount + return.fAmount − this.fMonies[].sum = 0)

kaisō Postcondition m.coins + \result .coins − this.coins = 0

to answer. While an automated approach cannot provide an
answer to these questions, we do obtain valid specifications
which are more precise and compact than previous work.

Our approach relies on specifications provided from ex-
ternal sources. While we stress the fact that our approach
complements existing automatic techniques for specification
extraction, we do not strictly depend on them, as we can
equally well accommodate developer specifications. How-
ever, in software development processes which use formal
methods, specifications are usually written prior to code. We
envision that our approach would be most useful in the main-
tenance and reengineering phase of the software process.
The dependency on existing specifications also means that
all their limitations (incompleteness, unsoundness) would
also affect the reliability of our results. We make no attempt
to identify or resolve any of these problems and assume that
they have been accounted for before our tools are employed.

5. RELATED WORK
The specification problem we address requires the avail-

ability of method specifications (possibly inferred automat-
ically); in turn we produce refined specifications which can
be used by approaches to verification relying on model fields.

Specification mining.
Existing approaches typically rely either on static program

analysis or on dynamic execution analysis.
Large scale static summarization for Java programs was

recently employed for bug finding [7]. The results provide
little information regarding the compactness, readability or
modularity of the generated summaries. However, relying
on static analysis of program source code means that their
summaries have a low level of abstraction and might benefit
from our refining approach.

Employing a different tactic, [25] and [16] analyze API and
generate transitions systems which model common usages.
While also generating specifications for abstract classes and
interfaces, their results are best suited for verifying temporal
sequencing properties of programs.

Dynamic analysis methods often use patterns of invari-
ants which they validate against real program executions.
Our approach also relies on constraint patterns, but employs
them to refine existing specification by introducing more ab-
stract model fields. Our prototype uses the Daikon invariant
detector [13] as an initial provider of specifications which we
then analyze and improve, complementing Daikon’s limita-
tions regarding interfaces and abstract methods. An initial
attempt to overcome these limitations was presented in [17].
It relies on polymorphic analysis and generates specifications
which are guarded with type checks. As we have shown, our
approach enhances these results by rendering type checks
redundant and making specifications more compact.

Verification using model fields.
Model fields are the central vehicle employed for specifi-

cation abstraction by our method.
In the verification community, model fields have raised

some challenges mainly because their initial definition was
informal. Early attempts like the one presented by Müller [23]
dealt only with the functional representation of model fields.
Others handled only a restricted form of the relational rep-
resentation [6, 9, 8]. Only recently have verification tools
started to employ complete model field verification [5] and
a complete language independent semantics has been pro-
posed [4]. Our approach can enhance the usability of these
verification techniques by providing them with specifications
of increased relevance.

6. CONCLUSIONS
We have presented an approach to specification inference

that focuses on behavioral subtyping and employs model
fields to raise the abstraction level of method specifications.
Given a set of subtypes, we use a library of relational pat-
terns to automatically infer model fields and their represen-
tations in each type, while observing behavioral subtyping
constraints. Subsequently, we can generate specifications for
the common supertype which use model fields as an abstract
representation of the concrete fields in the subtypes. Our
specifications are thus more abstract and potentially more
understandable than those produced by typical specification
inference approaches alone.

This approach preserves encapsulation as a desirable fea-
ture of object-oriented design. Moreover, the success in gen-
erating usable model fields and supertype specifications is an
indicator of a discipline that uses inheritance for subtyping
rather than merely for code reuse and thus correlates well
with methods that evaluate design quality.

7. REFERENCES
[1] R. Alur, P. Černý, P. Madhusudan, and W. Nam.

Synthesis of interface specifications for Java classes. In
32nd Symp. on Principles of Programming Languages,
POPL’05, pages 98–109, 2005.

[2] M. Balint. Automatic inference of abstract type
behavior. In Int. Conf. on Automated Software
Engineering, ASE ’10, pages 499–504, 2010.

[3] K. Beck and E. Gamma. Test-infected: programmers
love writing tests, pages 357–376. Cambridge
University Press, 2000.

[4] B. Beckert and D. Bruns. Formal semantics of model
fields in annotation-based specifications inspired by a
generalization of Hilbert’s ε terms. To appear, 2011.

[5] B. Beckert, R. Hähnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach, volume 4334 of LNCS. Springer, 2007.

[6] C.-B. Breunesse and E. Poll. Verifying JML
specifications with model fields. In Proceedings of the
Fifth ECOOP Workshop on Formal Techniques for
Java-like Programs, 2003.

[7] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug:
a powerful approach to weakest preconditions. In
Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI’09, pages 363–374, 2009.

[8] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards.
Model variables: cleanly supporting abstraction in
design by contract. Software: Practice and Experience,
35:583–599, May 2005.

[9] D. R. Cok. Reasoning with specifications containing
method calls and model fields. Journal of Object
Technology, 4(8):77–103, 2005.

[10] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy:
dynamic symbolic execution for invariant inference. In
International Conference on Software engineering,
ICSE’08, pages 281–290, 2008.

[11] V. Dallmeier, A. Zeller, and B. Meyer. Generating
fixes from object behavior anomalies. In Int. Conf. on
Automated Software Engineering, 2009.

[12] B. Dutertre and L. de Moura. A fast linear-arithmetic
solver for DPLL(T). In Proceedings of the 18th

International Conference on Computer Aided
Verification, volume 4144 of LNCS, pages 81–94.
Springer, 2006.

[13] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programm., 69(1-3):35–45, 2007.

[14] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for ESC/Java. In Proceedings of
the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software
Productivity, FME’01, pages 500–517, 2001.

[15] M. Goldstein, Y. A. Feldman, and S. Tyszberowicz.
Refactoring with contracts. In Proceedings of the Agile
Conference, pages 53–64. IEEE Computer Soc., 2006.

[16] N. Gruska, A. Wasylkowski, and A. Zeller. Learning
from 6,000 projects: lightweight cross-project anomaly
detection. In Proceedings of the 19th International
Symposium on Software Testing and Analysis,
ISSTA’10, pages 119–130, 2010.

[17] N. Kuzmina and R. Gamboa. Extending dynamic
constraint detection with polymorphic analysis. In the
5th International Workshop on Dynamic Analysis,
WODA’07. IEEE Computer Society, 2007.

[18] N. Kuzmina, J. Paul, R. Gamboa, and J. Caldwell.
Extending dynamic constraint detection with
disjunctive constraints. In the 6th International
Workshop on Dynamic Analysis, WODA’08, pages
57–63, 2008.

[19] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. Cok, P. Müller, J. Kiniry, P. Chalin, D. M.
Zimmerman, and W. Dietl. JML Reference Manual,
Draft Revision 2344, Feb. 2011. Available at
http://www.jmlspecs.org/documentation.shtml.

[20] K. R. M. Leino. Data groups: specifying the
modification of extended state. In Proceedings of the
13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA’98, pages 144–153, 1998.

[21] B. H. Liskov and J. M. Wing. Behavioural subtyping
using invariants and constraints. In Formal methods
for distributed processing: a survey of object-oriented
approaches, pages 254–280. Cambridge University
Press, 2001.

[22] P. F. Mihancea and R. Marinescu. Discovering
comprehension pitfalls in class hierarchies. In
European Conference on Software Maintenance and
Reengineering, pages 7–16, 2009.

[23] P. Müller. Modular specification and verification of
object-oriented programs. Springer-Verlag, 2002.

[24] C. Ruby and G. T. Leavens. Safely creating correct
subclasses without seeing superclass code. In
Proceedings of the 15th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA’00, pages 208–228, 2000.

[25] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static
specification mining using automata-based
abstractions. In International Symposium on Software
Testing and Analysis, ISSTA’07, pages 174–184, 2007.

[26] W. Weimer and N. Mishra. Privately finding
specifications. IEEE Transactions on Software
Engineering, 34(1):21–32, 2008.

