
Timing Analysis of Industrial Real-Time Systems*

S. Campos E. Clarke W. Marrero M. Minea
!School of Computer Science
Carnegie Mellon University

Abstract
In this papel; we describe a formal method for mod-

elling real-time systems and a procedure tcl compu,te the
model's timing characteristics automatically. We present
algorithms that compute exact bounds on the delay be-
tween two spec$ed events. We also describe an algorithm
to count the minimum and maximum number of times an
event occurs between a given starting condition and an
ending condition. These algorithms are based on symbolic
model checking techniques [6, 241 which have been suc-
cessfully used to find bugs in several industrial designs.
Such techniques can be used to search exhaustively state
spaces with up to lo3' slates. To illustrate the usefulness of
our .method, we describe the timing analysis for a p,atient
monitoring system with more than states. Wc: also
present the timing analysis and verification jor an aircraft
controller The sizes of the examples we verqy demonstrate
that our tool can be applied to realistic industrial designs.

1 Introduction
Symbolic model checking is today an industrial-strength

formal specification and verification methodl. It has been
applied successfully in the verification of sev'eral industrial
designs. It has been used to find bugs in the Futurebud
cache coherence protocol [111 which is an IEEE standard
and which has been adopted by the U.S. Navy. It is also
currently being used by a number of semiconductor compa-
nies in the validation of their new products. Using symbolic
model checking techniques it is possible to verify finite
state systems with an extremely large number of states.
State spaces with up to lo3' states can be exhaustively
searched in minutes. Models with more than states
have been verified using special techniques,. This paper
briefly introduces the symbolic model checking approach
and describes how it can be used to verify properties of
real-time systems. It also shows how these techniques can
be extended to compute quantitative timing information
that can help in understanding the behavior of the system
as well as evaluating its performance.

*This research is sponsored in part by the Wright Laboratory, Aero-
nautical Systems Center, Air Force Materiel Command, USAE and the
Advanced Research Projects Agency (ARPA) under Cirant F33615-93-
1-1330. and in part by the National Science Foundation under Grant
No. CCR-9217549 and in part by the Semiconductor Research Corpora-
lion under Conlract 92-DJ-294. The views and conclusions contained in
this document are those of the authors and should not he interpreted as
representing the official policies, either expressed or implied of the U.S.
government.

The model checker accepts the description of the sys-
tem being verified in a formal specification language and
then compiles this specification into a finite state-transition
graph. Properties about the system are expressed as for-
mulas in a temporal logic which uses the state-transition
graph as a model. Model checking consists of travers-
ing such a gwph and verifying if it satisfies the formula
representing the property [9, lo]. Symbolic model check-
ing uses boolean formulas to represent the state-transition
graph [6, 241 and to represent sets of states. This repre-
sentation makes it possible to do computations, such as
computing successors, on sets of states instead of on in-
dividual states. These formulas are implemented using
binary decision diagrams (BDDs) [4] which can be ma-
nipulated efficiently. BDDs usually generate very compact
representations by eliminating redundancy in formulas.

Model checking and several other methods recently pro-
posed [3, 7, 15, 16, 171 to verify real-time systems assume
that timing constraints are given explicitly in some nota-
tion like temporal logic. The verifier then determines if the
system satisfies the timing constraint or not. No other in-
formation about its performance and behavior is provided.
The algorithms proposed in this work extend the above tech-
nique by computing quantitative timing information about
the system. This allows for a more detailed analysis than
currently available in similar tools. These algorithms pro-
vide insight into how well a system works, rather than just
determining whether it works at all. Our approach enables
a designer to determine the timing characteristics of a com-
plex system given the timing parameters of its components.
This information is especially useful in the early phases of
system design, when not all parameters have been fixed. In
this case, the information provided by our algorithms can
be used to establish how changes in a parameter affect the
global behavior of the system.

The first two algorithms compute the exact lower and
upper bounds on the amount of time that elapses between
two events, such as a request and a corresponding response.
In our state-transition graph used to model the system, this
corresponds to the minimum and maximum length of a
path between two sets of states. Alternatively, we may be
interested not only in the length of the time interval between
two events, but also in the number of times a third event
occurs within any such interval. For example, a subsystem
may request execution. The time until it finishes execution
can be critical for system correctness. However, before the
subsystem c o m p l e t e s its task the processor may be granted
to other processes. The amount of time spent on other tasks
while the subsystem is waiting is an important performance
measure and can be computed by algorithms simiIar to those

97
0-8186-7005-3/95 $04.00 0 1995 IEEE

mentioned above. We also present algorithms to compute
this kind of information. Specifically, in the state-transition
graph model, these algorithms calculate the minimum and
the maximum number of times a specified condition can
hold on a path from a set of starting states to a set of final
states.

All of our algorithms use a discrete model of time. In
recent years, there has been considerable research on con-
tinuous time models [l, 2, 13, 18, 20, 251. Most of these
models use a transition relation with a finite set of real-
valued clocks and constraints on times when transitions
may occur. It can be argued that such models lead to more
accurate results than discrete time models. However, con-
tinuous time models require an infinite state space because
the time component in the states can take arbitrary real
values. Most verification procedures based on this type of
model depend on constructing a finite quotient space called
a region graph out of the infinite state space. Unfortunately,
the region graph construction is very expensive in practice
and current implementations of algorithms that use it can
only handle at most a few thousand states. Because we use
a discrete model of time, we are able to take advantage of
symbolic techniques [6,24] in which the transition relation
is represented by a binary decision diagram (BDD). This
enables us to handle systems that are many orders of mag-
nitude larger than can be handled using continuous time
techniques.

Other approaches for analyzing real-time systems exist.
The rate monotonic scheduling theory (RMS) [19, 22, 261
is one example. Given a set of processes and their timing
constraints, it proposes a priority assignment algorithm that
assigns higher priorities to processes with shorter periods.
Optimal response time is guaranteed by the RMS theory
if priorities are assigned according to this rule [22]. The
RMS theory proposes a schedulability test based on total
CPU utilization; a set of processes (which have priorities
assigned according to RMS) is schedulable if the total uti-
lization is below a computed threshold. If the utilization
is above this threshold, schedulability is not guaranteed.
This analysis imposes a series of restrictions on the set of
processes. Only certain types of processes are considered
with limitations, for example, on periodicity and synchro-
nization.

Another approach to schedulability analysis uses algo-
rithms for computing the set of reachable states of a finite-
state system [16, 171. The algorithms construct the model
with the added constraint that whenever an exception oc-
curs (e.g. a deadline is missed) the system transitions to a
special exception state. Verification consists of computing
the set of reachable states and checking whether the ex-
ception state is in this set. No restrictions are imposed on
the model in this approach, but the algorithm only checks
if cxccptions can occur or not. Quantitative information
is not generated, and other types of properties cannot be
verified, unless encoded in the model as exceptions.

In comparison, our method does not impose any re-
striction except that the system be modeled as a set of pro-
cesses that run in parallel and are defined by state-transition
graphs. For example, the actual functional behavior of each
process can be modeled and analyzed. Schedulability is de-
termined by computing the minimum and maximum execu-
tion times for all processes. The process set is schedulable
if and only if each process is guaranteed to finish execution

before its next period starts. Our technique always deter-
mines if the set of processes is schedulable or not, unlike
RMS analysis, which may not provide any schedulability
information if utilization is above the computed threshold.
If the processes are not schedulable, our algorithms deter-
mine which specific deadlines are missed and by how much.
When no deadline is missed, the same results provide re-
sponse times for each process, an important performance
measure for real-time systems.

Several industrial real-time systems have been modelled
and verified using the algorithms described in this paper.
Model checking techniques have been used to verify their
logical correctness, while quantitative algorithms have been
used to evaluate their performance. The first example is a
medical monitoring system. Sensors connected to a pa-
tient continuously measure various parameters of his or her
condition. The system records this data for analysis by
physicians and also issues an alarm when abnormal condi-
tions occur. Priority driven concurrent processes are used to
control the various components of the monitor. The analy-
sis of the system consists of verifying if the performance of
the controller satisfied its expected response time. The re-
sults produced by our quantitative algorithms also allowed
us to identify inefficiencies in the design and suggest opti-
mizations. The modified model was then analyzed and its
performance once again evaluated. The information gener-
ated by the algorithms made it possible not only to analyze
the original design, but also to improve it.

The second example is an aircraft control system. This
example is derived from the one described in [23]. Its tim-
ing requirements are representative of those found in actual
aircraft. We model the software that controls the various
components of an airplane, and gather timing information
about the system using the tools described above. The
system consists of set of priority driven processes, where
each process is responsible for a subsystem of the aircraft.
Subsystems being controlled include navigation, display,
radar and weapons. We use the algorithm defined by the
rate monotonic scheduling theory [19, 22, 261 to make the
system predictable. The original analysis of the example
was able to show that only some of the processes were
schedulable, while no information was given on the oth-
ers [23]. Using the algorithms presented in this paper, we
were able to determine the schedulability of the complete
task set for this example. We were also able to determine
other critical performance information, such as the reaction
time of the weapons subsystem. In both examples the state
space of the final model has between 10l3 and 10’’ states,
but its logical properties and timing characteristics can be
computed in few seconds on a i486 based workstation. The
memory requirement for this computation was about two
megabytes.

These examples demonstrate that our tools can be used
for the specification and verification of designs of real-time
systems used in industry . The fact that most properties
could be computed in seconds shows that even larger ex-
amples can be modelled and verified. We believe that the
techniques described are mature enough to be used in an
industrial environment, and that they can be of significant
assistance in improving the efficiency and reliability of real-
time designs.

The remainder of the paper is organized as follows. The
next section defines BDDs, which play an important role

98

in our symbolic methods. Section 3 explains syimbolic
model checking. In Section 4 the algorithms for computing
the longest and shortest paths between two state sets are
presented. Algorithms for counting the number of states
that satisfy a given condition along a path between two
sets of states are described in section 5. Sections 6 and
7 present the verification and timing analysis of a medical
monitoring system and an aircraft controller respectively.
Section 8 concludes the paper.

2 Binary Decision Diagrams
Binary decision diagrams (BDDs) are a canonical rep-

resentation for Boolean formulas [4]. A BDD is similar to
a binary decision tree except that its structure is a directed
acyclic graph rather than a tree. This allows nodes and
substructures to be shared. The vertices of the graph are la-
beled with the variables of the Boolean fonnula, except for
the two “leaves” which are labeled with 0 and 1. To insure
canonicity, a strict total order is placed an the variables as
one traverses a path from the “root” to a ‘‘leaf.’’ The edges
are labeled with 0 or I. For every truth assignment there
is a corresponding path in the BDD suclh that at vertex 2,
the edge labeled 1 is faken if the assignment sets z: to 1;
otherwise, the edge labeled 0 is taken. If the path ends in
the “leaf” labeled 0, tlhen the assignment does not satisfy
the formula, and conversely, if the “leaf” reached is labeled
1, then the formula is satisfied by the assignment. Figure 1
illustrates the BDD for the Boolean formula (a Ab) v (c Ad) .

Figure 1: BDD for (a A b) V (c 12 d)

In [4], Bryant shows that given a variable ordering, the
BDD for a formula is mique. The paper also gives efficient
algorithms for computing the BDDs for -f and f V g given
the BDDs for f and g. For the purposes of symbolic model
checking, it is also necessary to quantify over Boolean
formulas. Bryant describes an algorithm for computing the
BDD of a restricted formula such as f IV=0 or f v = l . This
allows us to compute the BDD for the formula 3v i f., where
ti is: aBoolean variable and f is aBoolean formula, as f IV=0
Vf Iv=l . However, our implementation uses other known
algorithms for performing quantification which are more
efficient when multiplle variables need to be: quantified.

All of the formulas used in our algorithms are repre-
sented by BDDs. The .BDDs for these formulas are built up
in a bottom-up manner. The set of atomic propositions in

these formulas is precisely the set of state variables, there-
fore the BDD for an atomic proposition consists simply of
a single BDD variable. Since a formula is built up from
atomic propositions using Boolean connectives, the BDDs
for a formula can be constructed using the BDD operations
discussed in the previous paragraph. In fact, the implemen-
tation allows arbitrary state formulas of computation tree
logic (CTL) [101. These formulas may contain branching
time operators as well as logical connectives, but for the
sake of simplicity, this discussion is limited to Boolean
formulas.

3 SymboIic Model Checking
Temporal logic model checking is a technique for de-

termining the correctness of finite-state systems [9, 101.
In this technique, specifications are written as formulas in
a propositional temporal logic and computer systems are
represented by state-transition graphs. Verification is ac-
complished by an efficient breadth first search procedure
that views the transition system as a model for the logic,
and determines if the specifications are satisfied by that
model. There are several advantages to this approach. An
important one is that the procedure is completely auto-
matic. Another advantage is that, if the formula is not true,
the model checker will provide a counterexample. The
counterexample is an execution trace that shows why the
formula is not true. This is an extremely useful feature
because it can help locate the source of the error and speed
up the debugging process. Another advantage is the ability
to verify partially specified systems. Useful information
about the correctness of the system can be gathered before
all the details have been determined. This allows the verifi-
cation of a system to proceed concurrently with its design.
Consequently verification can provide valuable hints that
will help designers eliminate errors earlier and define better
systems. Model checkers achieve great efficiency through
the use of symbolic implementation techniques [24]. Sym-
bolic model checkers represent states and transitions using
boolean formulas. Implementing these boolean formulas as
BDDs leads to very efficient algorithms for model checking
that are able to verify systems with extremely large state
spaces. This section will first describe the method used to
represent the state-transition graph using boolean formulas.
It will then briefly describe the logic used to express the
properties to be verified. The model checking algorithm
will not be presented here for brevity. More information on
symbolic model checking can be found in [7, 5, 6, 12,241.

Representing the Model
A model of the system in our algorithm is a labeled

state-transition graph M . The key to the efficiency of the
algorithm is lo use BDDs to represent the labeled state-
transition graph and to verify if the formula is true or not.
The following method will be used to represent the tran-
sition relation as a BDD. Assume that system behavior is
determined by the boolean variables V = {WO, . . . , ti, - 1 }.
Let V’ = {wL, . . . , be a second copy of these vari-
ables. We will use the variables in V to represent the value
of the variables in the current stake, and the variables in V’
to represent the value in the next state. The relationship be-
tween values of variables in the current and the next states
is written as a boolean formula using V and V’. This will
generate the boolean formula N representing the transition

99

relation. This formula will then be converted to a BDD.

N(vo , . . . , Wn-I, .U;, ‘ ’ .,.;-I)

Computation Tree Logic
Computation tree logic, CTL, is the logic used by in our

model checker to express properties that will be verified.
Computation trees are derived from state transition graphs.
The graph structure is unwound into an infinite tree rooted
at the initial state, as seen in figure 2. Paths in this tree
represent all possible computations of the program being
modelled. Formulas in CTL refer to the computation tree
derived from the model. CTL is classified as a branch-
ing time logic, because it has operators that describe the
branching structure of this tree.

Formulas in CTL are built from atomic propositions,
where each proposition corresponds to a variable in the
model, boolean connectives 1 and A, and temporal opera-
tors. Each operator consists of two parts: a path quantifier
followed by a temporal operator. Path quantifiers indicate
that the property should be true of all paths from a given
state (A), or some path from a given state (E). The tempo-
ral quantifier describe how events should be ordered with
respect to time for a path specified by the path quantifier.
They have the following informal meanings:

0 F p (p holds sometime in the future) is true of a path
if there exists a state in the path that satisfies p.

0 G p (p holds globally) is true for a path if p is satisfied
by all states in the path.

0 X p (p holds in the next state) means that p is true in
the next state of the path.

0 p U $J (p holds until 4 holds) is satisfied by a path if
1c, is true in some state in the path, and in all preceding
states, p holds.

Some examples of CTL formulas are given below to
illustrate the expressiveness of the logic.

0

0

0

4

AG(reg + A F a c k) : It is always the case that if
the signal reg is high, then eventually ack will also be
high.

EF(starteclA Treacly): It is possible to get to a state
where started holds but r e a d y does not hold.

AG EF restart: From any state it is possible to get
to the restart state.

AG(send -+ A[sencl U recu]) : It is always the case
that if send occurs, then eventually rem is true, and
until that time, send must remain true.

Lower and Upper Bound Algorithms
This section presents the first two algorithms for com-

puting quantitative information of real-time systems. These
algorithms compute minimum and maximum time delays
between specified events. A real-time system is mod-
elled as a state-transition graph in the way described pre-
viously. Recall that our algorithms work on boolean for-
mulas representing sets of states. For example, given a
formula representing a set of states S, the formula for

T (S) = {s’ I N(s , s ’) holds for some s E S}, the set
of all successors of states in S, can be constructed from the
formula for S and the formula for the transition relation in
one step, regardless of the number of states in S and T (S) .
In particular, if S WO, . . . , u n - l) is the formula for S then
the formula for T [S) is 3v0 , . . . , v,-l[S(vo,, ~ ~ - 1) A
N(vo, . . . , ~ ~ - 1 , ~ 6 , . . . , wk-,,)]. The fact that all opera-
tions consider sets of states instead of individual states is
one of the main reasons for the efficiency of our method.

We consider the lower bound algorithm first (figure 3).
The algorithm takes two sets of states as input, start and
Jinal. It returns the length of (i.e. number of edges in) a
shortest path from a state in start to a state infinal. If no
such path exists, the algorithm returns infinity. Recall that
the function T (S) gives the set of states that are successors
of some state in S. The algorithm also uses two variables
R and R’ to represent sets of states. The function T , the
sets R and R‘, and the operations of intersection and union
can all be easily implemented using BDDs.

proc lower (start, final)
2 = 0;
R =start;
R’ = T (R) U R;
while (R‘ # R A R n final = 0) do

i = i + l ;
R= R’;
R’ = T(R’) U R’;

then return i;
else return 00;

if (R n f inal # 0)

Figure 3: Lower Bound Algorithm

The first algorithm is relatively straightforward. Intu-
itively, the loop in the algorithm computes the set of states
that are reachable from start. If at any point, we encounter
a state satisfyingfinal, we return the number of steps taken
to reach the state.

Next, we consider the upper bound algorithm (figure 4).
This algorithm also takes start andfinal as input. It returns
the length of a longest path from a state in start to a state in
jinal. If there exists an infinite path beginning in a state in
start that never reaches a state in$nal, the algorithm returns
infinity. The function T-’(S’) gives the set of states that
are predecessors of some state in S’ (i.e. T-’(S‘) = {s I
N (s , s’) holds for some s’ E S’}). R and R’ will again
be sets of states. We also denote by not$nal the set of
all states that are not in final. As before, the algorithm is
implemented using BDDs.

The upper bound algorithm is more subtle than the pre-
vious algorithm. In particular, we must return infinity if
there exists a path beginning in start that remains within
notfinal. A backward search from the states in notfinal is
more convenient for this purpose than a forward search. We
use the following two definitions in proving the algorithm
correct:

Si is the set of states at the beginning of a path con-
taining i states, all contained in notJinal.

100

Figure 2: State itransition graph and corresponding computation tree

proc upper (start, final)
i = 0;
R =TRUE,
R’ =not&”
while (R’ # R A R’ n start # 0) do

i = i - t l ;
R = 12’;
R’ = T-’(R’) n not-final;

then return CO;

else return i ;

if (R = R’)

Figure 4: Upper Bound Algorithm

M is the number of states in a longest path beginning

Although ultimately we are interested in the number of
edges in a longest path, it is easier to reason wlhen we
count the number of states in a path. The correctness of
the algorithm then follows from proving that the following
exipressions are loop invariants: i 5 M ; R = Si; and
R’ = Si+l. The proof can be found in [SI.

5 Condition Counting Algorithms
In many situations we are interested not only in the

length of a path leading from a set of starting states to a set
of final states, but also in measures that depend on the num-
ber of states on the path that satisfy a given condition. For
example, we may wish to determine the rninimuni (max-
imum) number of times a condition holds on a path, or
the minimum (maximum) percentage of states that satisfy
a given condition, on any path from starting to final states.

Both algorithms in this section take as input three sets of
states: start, cond and final. The algorithims compute the
minimum and the maximum number of st,ates that belong
to cond, over all finite paths that begin with a state in start
and terminate upon reaching$nal.

To simplify the algorithms, we assume that any path
beginning in start must reach a state in ,final in a finite
number of steps. This requirement is necessary to ensure

inside start and contained within not-j’inal.

that the minimum (maximum) is well-defined. It can be
checked using the upper bound algorithm described in the
previous section. Finally, we assume that all computations
involve only reachable states. This can be achieved by
intersecting start with the set of reachable states computed
a priori.

To keep track at each step ofthe number of states in cond
that have been traversed, we define a new state-transition
system, in which the states are pairs consisting of a state
in the original system and a positive integer. Thus, if the
original state-transition graph has state set S, then the aug-
mented state set will be S, = S x IN.

If N C S x S is the transition relation for the original
state-transition graph, we define the augmented transition
relation N , S, x S, as

N a ((s , k) , (s’, IC’)) = N (s , s’) A
(s’ E c o n d A k’ = k + 1 V
s’ e cond A k’ = k)

In other words, there will be a transition from (s, k) to
(s’, k’) in the augmented transition relation N , iff there is
a transition firom s to s’ in the original transition relation
N and either s’ E cond and k‘ = k + 1 or s’ cond and
k‘ = k . We also define T to be the function that for a
given set U C S, returns the set of successors of all states
in U . More formally, T (U) = {U’ I N , (U , U’) holds for
some U E U } . In the actual BDD-based implementation,
an initial bound k,,, can be selected to achieve a finite
representation for k , and new BDD variables can be added
dynamically if this bound is exceeded. The system is still
finite-state because all paths we consider are finite and k is
bounded by their maximum length.

The algorithm for computing the minimum count is
given in figure 5. In the algorithm text, Final and Notgnal
denote the sets of states i n j n a l and S - final, paired with
all possible values of k . More formally:

Final = { (s , k) I s E f inal, k E IN}

and

Not-final = { (s, k) I s f inal, k E IN}

101

proc mincount (start, cond, final)
current-min = 00;
R = { (s , 1) I s E start n cond}u

~

{(s, 0) I s E start n cond};

Reached-final = R n Final;
i f Reached-final # 0 then

loop

m = min{k 1 (s , k } E Reached-final};
i f m < current-man then

current-min = m;
R' = R n Not-final;
i f R' = 0 then return current-min;
R = T(R');

endloop;

Figure 5: Minimum Condition Count Algorithm

The algorithmuses R to represent the state set in Sa reached
at the current iteration, while Reached-final and R' are its
intersections with Final and Not(na1 respectively. Variable
current-min denotes the minimum count for all previous
iterations. The minimum computation over the set of values
of k in a formula S can be done by existentially quantifying
the state variables (computing Ii' = { k I 3 (s , k) E S})
and following the leftmost nonzero branch in the resulting
BDD, provided it uses an appropriate variable ordering.
An efficient algorithm that does not depend on the variable
ordering is given in [21].

At iteration i, the algorithm considers the endpoints of
paths with i states. The reached states that belong to f i -
nal are terminal states on paths that we need to consider.
The minimum count for these paths is computed, using the
counter component of the path endpoints, and the current
value of the minimum is updated if necessary. For the
reached states that do not belong tofinal, we continue the
loop after computing their successors. If all reached states
are infinal, there are no further paths to consider and the
algorithm returns the computed minimum.

We reason about the correctness of the algorithm by
showing that the following invariants are true before the ith
iteration of the loop:

0 11: A pair (s , k) belongs to R iff s can be reached
from start on a path with i states, on which k states
are in cond, and only the last state is allowed to be in
final.

0 I2: current-min is the minimum number of states in
cond over all paths with less than i states that begin in
start and terminate upon reaching $final, or infinity if
there are no such paths.

Initially, R contains the states in start, paired with 1 if
they belong to cond and with 0 otherwise, and current-min
is infinity. Therefore, both invariants hold before the first
loop iteration.

By invariant 11, the intersection Reached-f inal = R n
Final contains all states infinal reached for the first time
by a path containing i states. The count component k of a
reached state is, again by I , , the number of states in cond

proc maxcount (start, cond, final)
current-max = -a;
R = {(s, I) I s E start n __ cond}u

{ (s , 0) 1 s E start n cond};

Reached-final = R n Final;
i f Reached-final # 0 then

loop

m = max{k I (s, k } E Reached-final};
i f m > current-max then

current-max = m;
RI = R n Not-final;
if R' = 0 then return current-max;
R = T(R');

endloop;

Figure 6: Maximum Condition Count Algorithm

on such a path. Computing the minimum m of these values
and setting current-min = m if m is smaller ensures that
current-min now accounts for paths with up to i states.
Therefore, 12 will hold at the beginning of the next iteration.

Since we only consider paths that reachfinal once, it
is correct to continue the state traversal only from states in
R' = Rn h'ot-final. If this set is empty, there are no further
paths, with more that i states, that reachfinal. Therefore,
by invariant 12, current-min is the correct return value.
For the case where the loop is continued, the definition of
transition relation ensures that the count component in the
augmented state space is incremented on a transition step
if and only if the new state is in cond. This implies that
the count component k represents at all times the number
of states in cond traversed on a path. Consequently, 11 will
hold again for the new value of R obtained as the image of
RI under T.

Next, we argue that the algorithm terminates. The pre-
condition ensures that all paths from start reach final in
a finite number of steps. Thus, we will eventually have
R' = R n Not-final = 0, and the algorithm correctly re-
turns the value current-min.

As an optimization, the number of iterations required in
certain cases can be reduced by introducing the line

R' = R' n { (s , I ; } I s E S A k < current-min}

before testing R' = 0. A11 paths with a count of at least
currentmin can be safely discarded, which reduces the
search to those paths on which the count for cond is still
smaller than the currently achieved minimum.

Finally, we note that the algorithm for the maximum
count, given in figure 6, has the same structure and can
be obtained by replacing min with max and reversing the
inequalities. Variants of both algorithms can be used to
compute other measures that are a function of the number of
states on a path that satisfy a given condition. For example,
we can determine the minimum and the maximum number
of states belonging to a given set cond over all paths of a
certain length 1 in the state space.

102

6 A Medical Monitoring Example,
This section presents a patient monitoring system de-

rived from the one presented in [141. It is a realistic example
that models many features existing in actual systems. The
exaniple has been expanded to show how tlhe algorithms
described in this paper can be used to analyze models of in-
dustrial complexity. The resulting model for this example
has more than 1013 states but its timing characteristics can
be computed in a few seconds.

The system consists of a set of processes and can be
seen in figure 7. The acquire process is the only peiriodic
process in the system, all others are aperiodic. Acquire
executes every 20ms, and its function is to rlead data from
sensors monitoring the patient. Usually, the data read by
the sensors contain spurious information. In order to elim-
inate erroneous data, the output of acquire is sent to the
,filter process. Filter is an aperiodic process. It is triggered
whenever data is read from the sensors, t.hat is, whenever
acquire finishes its execution. The filter proicess is depen-
dent on data generated by the acquire process. The same
dependency pattern is also used to trigger execution of the
other aperiodic processes. AfterJilter executes, its results
are analyzed by the patient condition detection processes.
Filter preprocesses the data generated, and may decide to
start the detection processes or not, depending on thle data
available. Three such processes are modelled in this ex-
ample to detect abnormal conditions in the blood pressure,
heart rate and temperature. The detection processes c m is-
sue an alarm after analyzing the data. If the alarm process is
executed, it also starts the audio process that generates the
actual alarm signal. Finally, the Jilter process; also sends its
data to the display and recorder processes, that display the
data on the screens and record it in some non-volatile-media
for future analysis. The execution times for the processes
in the system can be summarized as follows. The acquire
process executes for lms, the filter process executes for
3ms, and all other processes execute for 2ms;.

Most processes in this system are aperiodic in na-
ture. Because of this., methods such as the rate mono-
tonic scheduling (RMS) [19, 22, 261 cannot be directly
used to analyze this process set. For example, the as-
signment of priorities to processes is more complex than
in the periodic case which can use the IRMS algorithms.
In this example priorities have been assigned heuristically,
and quantitative algorithms have been used to investigate
the efficiency of the assignment. Initially, the priority order
defined was, from the highest to the lowest priority process:
acquire,$ltel; bloodpressure, heart-rate, temperature, dis-
play, recordel; alarm, a.nd audio.

The aperiodic nature of the processes also makes it dif-
ficult to determine the schedulability requirements. Except
for the acquire process, no other process hias a deadline.
Nevertheless, the timing constraints of the system can be
easily identified. The acquire process has ;a period and a
deadline of 20ms. The timing constraints for the other pro-
cesses can be defined in several ways. A straightforward
way is to require that all processes to finish before the next
execution of acquire. Our algorithms can ddermine if the
process set satisfies this constraint by computing minimum
and maximum times between the moment when acquire
requests execution and the moment when each process ter-
minates. However, this requirement can be too restrictive

in some cases. Overlapping the execution of consecutive
process instantiations is acceptable if the response time can
still be bounded. The algorithms described in this paper
can determine response times for all processes by checking
if there exists a process that can execute for an unbounded
amount of time. If there is such a process, then the system
is not schedulable. If not, these results allow the designers
to check if the response times are acceptable. Both results
have been computed for this example, and are presented in
the following table.

Process
--

acquire
filter

blood pressure
heart rate

temperature
display
recorder

alarm
audio

Period

20

Execution Times
--
min
1

4
6
6
6
6
8

12
14

r
max

1
4

__

00
00
00
12
14
CO
00

I -
min

1
3
2
2
2
2
4
6
2

-

I -
max

1
3
2
4
6
8

10
10
2

-

e (1) Minimum and maximum times between the start
of acquire and the end of execution of the process. If
the maximum time is less than the period of acquire,
then the process will finish execution before the next
instantiation of acquire is started.

e (2) Minimum and maximum times between the start
and end of execution of each process. If this time is
less than infinity, then the system is schedulable.

In some cases, it is possible that the condition detection
processes are never executed, as well as the alarm and
audio processes. Because of this, the maximum time from
the start of acquire until these processes finish is infinity.
However, in many situations it is important to know the
maximum time until an event provided it will occur. We
can change the model to reflect that an alann will always be
issued, and compute such information. In this model, we
determined that from the moment acquire reads abnormal
data until the alarm sounds, less than 18ms will elapse
(1 6ms for alarm and 18ms for audio).

The results produced by our algorithms can provide
more information about the behavior of the system than
just determining its schedulability. For example, we can
see from the data presented that the alarm and audio pro-
cesses are the ones with highest response times. However,
sounding the alarm is a critical function that should not be
postponed by other functions such as recording the data
on tape. One way to avoid this problem is by raising the
priority of alarm to avoid interference from less important
processes and compute the response times for the modi-
fied model. \Ne raised the priority of the alarm process
by changing the priority order to: acquire, jiltel; alarm,
bloodpressure, heart-rate, temperature, display, recorder,
and audio. Tlne response times were computed again, and
the results are presented in the table below:

103

r - - - - - - - - - - i
I patient condition I
I detection I
I I

Process

acquire
filter

blood pressure
heart rate

temperature
display
recorder

a1 arm
audio

Period

----xi-

Figure 7: The patient monitoring system

Execution Times

18
20

8 0 3
14 00

14
16

00

Some unexpected results can be seen in this table. The
system is no longer schedulable. The audio process can
execute for an unbounded amount of time. By comparing
the two tables we see that the maximum execution times of
most processes increased. But no additional load has been
added to the system. In order to verify why this behavior
was occurring we used the counterexample feature of the
SMV model checking system [24]. A counterexample is
an execution trace that violates a property specified. By
expressing the property that the audio process would always
finish execution, we were able to produce a counterexample
which showed that this property was false. The execution
trace revealed the following execution sequence leading to
the problem:

acquire; filter; bloodpressure; alarm; heartyate;
alarm; temperature; alarm; display; recorder; acquire;
filter; ...

We can see from the trace above that the problem is
caused by the fact that alarm executes three times for the
same instantiation of acquire when all detection processes
find abnormalities. This causes an overload in the system
making it unschedulable. The reason this did not happen
before was that every time a detection process triggered the
alarm process, it requested execution, but it would only ex-
ecute after all detection processes executed. One execution
responded to all alarm conditions. A simple solution to

this problem is to lower the priority of alarm and change
the design so that multiple alarms are handled correctly.
The final priority order is: acquire, filtel; bloodpressure,
heartyate, temperature, alarm, display, recorder, and au-
dio. The results computed using this priority order showed
that the system was schedulable.

The condition counting algorithms can also be used to
analyze the behavior of the system. If the designer believes
that the alarm process is being blocked by less important
processes, he or she can use the condition counting algo-
rithms to quantify this effect, For example, we can compute
how much time is spent on the execution of the display or
the recorder processes while alarm is requesting execution.
The parameters of mincount and macount can be specified
as follows. The initial state is the start of alarm, the final
state is the end of execution of alarm, and the condition
to be counted is the processor granted to either display
or recorder. Using the first priority order presented, the
time spent on display and recorder while alarm is blocked
is 4ms. With the last priority order this time is zero, as
expected.

The algorithms described in this paper allow us to
analyze the medical monitoring example in many ways.
Schedulability is determined by computing the response
times of all processes. The reaction time to an event is
computed in the same manner. We can determine the min-
imum and maximum latencies between the occurrence of
an abnormal event and its recognition by the system (in this
case by sounding the alarm). The algorithms also allow us
to study how changes in the parameters affect global behav-
ior. In this example we can see the impact that the priority
order has on response times. This type of analysis can be
very useful in validating the design of industrial real-time
systems.

7 An Aircraft Controller
As another example of how our techniques can be ap-

plied in the verification of realistic real-time systems, this

104

key set
hook update
graph. displ.

.~
RWR
Radar

NAV

Track
Weapon

nav update

weaBon aim

* 'Weapon protocol is aperiodic with a deadline of 200ms.
* * Weaponrelease has a period of 200ms, but its deadlineis 5ms.

section briefly presents the verification of an aircraft con-
troller. A complete analysis of this example can he found
in [8]. The control system for an airplane can be character-
ized by a set of sensors and actuators connected to a central
processor. This processor executes the software to analyze
sensor data and control the actuators. Our model describes
this control program and defines its requirements so that the
specifications for the airplane are met. The requiirements
used are similar to those of existing military airciraft, and
thle model is similar to the one described in [23].

The aircraft controller is divided into systems ;and sub-
systems. Each system performs a specific task in con-
trolling a component of the airplane. The most important
systems are implemented in our model to provide a real-
istic representation of the controller. The systems being
controlled include navigation, radar control, weapons and
display. Each system is composed of one or more subsys-
tems. Timing constraints for each subsystem are derived
from factors such as required accuracy, human iresponse
cliaracteristics and hardware requirements. The following
table presents the subsystems being modelled, as well as
their timing requirements. Concurrent processes are used
to implement each subsystem. In order to enforce the dif-
ferent timing constraints of the processes, priority schedul-
ing is used. Predictability is guaranteed by scheduling the
processes using RMS [19,221.

We have implemented this control system in the SMV
language [24]. The SMV model checker has been used to
verify its functional correctness, while its timing, correct-
ness has been checked using the quantitative algorithms
described in this paper. Both a preemptive scheduler and
a non-preemptive scheduler were implemented to analyze
the effects of preemption in the response times. Schedula-
bility was determined by computing response times of each
process and checking that each process met its deadline.
In this example the deadlines are the same as the periods
(except for the weapon release subsystem). The follow-
ing table summarizes the execution times computed by the
algorithms. Processes are shown in decreasing order of pri-

Subsystem

Weapon release
Radar track filter
Contact mgmt.
Data bus poll
Weapon aim

Radar target upd
NAV update

Display graphic
Display hook upd
Track target upd
Weapon protocol
NAV steer cmds.
Display store upd

Display keyset
Display status upd

dead
line

5
25
25
40
50
50
50
80
80

100
200
200
200
200
200

-

-

Execution Times
preempt -

min
3
2
7
1

10
12
20
10
14
26

1
35
36
37
40

-

__

-
max

3
5

10
11
14
19
34
44
46
51
21
85
95
96
99

-

__

no Dreemot -
min

3
2
7
1
2

12
20
10
14
26
3

36
37
38
41

-

-

-
max

9
10
15
14
18
19
27
43
47
51
46
74
97
98

101

-

-

ority. Deadlines are also shown so that schedulability can
be easily checked. The minimum and maximum execution
times are given for both the preemptive and non-preemptive
schedulers.

We can see from the table above that the process set is
schedulable using preemptive scheduling. Notice however
that preemption does not have a big impact on response
times. Except for the most critical process, all others main-
tain their schedulability if a non-preemptive scheduler is
used. Moreover, we can see that non-preemption causes
weapon release to miss its deadline, but by a relatively
small amount. If a preemptive scheduler were expensive,
reducing the CPU utilization slightly might make the com-
plete system schedulable without changing the scheduler.
By having such information the designer can easily assess
the impact of various alternatives to improve the perfor-
mance, without having to change the implementation.

8 Conclusion
This paper presents a formal method to express and com-

pute timing characteristics of real-time systems. A descrip-
tion of the system is first compiled into a state-transition
graph represented using binary decision diagrams. Sym-
bolic model checking algorithms compute the minimum
and maximum lengths of paths between two state sets. In
addition, an algorithm for computing the exact upper and
lower bounds on the number of times a condition can hold
on any pathbetween two state sets is presented. Using these
techniques we have verified two examples which model ac-
tual industrial applications. These examples demonstrate
that our tools can handle applications of realistic size and be
useful in the design process of industrial real-time systems.

The symbolic techniques employed have made our al-
gorithms very efficient. BDDs provide a concise repre-
sentation for the state-transition graph and for state sets.
This representation allows us to handle examples of realis-
tic complexity. State-transition graphs with IO3' states can
be traversed in minutes.

105

Our method computes quantitative information that can-
not be directly obtained using other approaches. The
bounds computed by our algorithms allow us to make as-
sertions about system performance rather than just about its
correctness. Furthermore the versatility of our method is in-
dicated by the fact that practically any real-time design can
be represented. The only restriction imposed on the system
being analyzed is that it be modeled as a state-transition
graph.

Finally, our techniques can be used during the design
process to evaluate design decisions. For example, in the
medical monitoring system, inefficiencies were identified
and the computed information led to suggestions for possi-
ble improvement. The model was modified to account for
these changes. The analysis of the new system confirmed
that the changes were indeed optimizations.

The examples analyzed in this work indicate that the in-
formation obtained by our method can be extremely useful
in the development of real-time systems. We are confident
that this method can be used successfully in improving the
efficiency and reliability of real-time system design.

References
[l] R. Alur, C. Courcourbetis, and D. Dill. Model-

checking for real-time svstems. In Proceedinas of
the 5th Symp. on Logic L$ Computer Science, &ge”s
414425,1990.

[2] R. Alur and D. Dill. Automata for modeling real-time
systems. In Lecture Notes in Computer Science, 17th
ICALP. Springer-Verlag, 1990.

[3] R. Alur and T. A. Henzinger. Logics and models of
real-time: a survey. In Lecture Notes in Computer
Science, Real-Time: Theory in Practice. Springer-
Verlag, 1992.

[4] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8), 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L.
Dill. Sequential circuit verification using symbolic
model checking. In 27th ACMLEEE Design Automa-
tion Conference, 1990.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and J. Hwang. Symbolic model checking: 10’’ states
and beyond. In LICS, 1990.

171 S. V. Campos and E. M. Clarke. Real-time sym-
bolic model checking for discrete time models. In
First AMAST International Workshop in Real-Time
Systems, 1993.

[8] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea,
and H. Hiraishi. Computing quantitative characteris-
tics of finite-state real-time systems. Technical Re-
port CMU-CS-94- 147, Carnegie Mellon University,
School of Computer Science, 1994.

[9] E. M. Clarke and E. A. Emerson, Synthesis of syn-
chronization skeletons for branching time temporal
logic. In Logic of Programs: Workshop, Yorktown
Heights, NX May 1981. Springer-Verlag, 1981. vol-
ume 13 1 of Lecture Notes in Computer Science.

[IO] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Auto-
matic verification of finite-state concurrent systems
using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems,

[111 E. M. Clarke, 0. Grumberg, H. Hiraishi, S. Jha, D. E.
Long, K. L. McMillan, andL. A. Ness. Verification of
the Futurebus+ cache coherence protocol. In L. Clae-
sen, editor, Proceedings of the Eleventh International
Symposium on Computer Hardware Description Lan-
guages and their Applications. North-Holland, Apr
1993.

[121 E. M. Clarke, 0. Grumberg, and D. E. Long. Verifica-
tion tools for finite-state concurrent systems. In REX
’93 SchoolAGorkshop: A Decade of Concurrency, No-
ordwijkerhout, The Netherlands, June 1993. to appear
in Springer Lecture Notes in Computer Science.

[131 C. Courcoubetis and M. Yannakakis. Minimum and
maximum delay problems in real-time systems. For-
mal Methods in System Design, 1, 1992.

[141 P. J. Drongowski. Software architecture in realtime
systems. In IEEE Workshop on Real-Time Applica-
tions, 1993.

[15] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srini-
vasan. Quantitative temporal reasoning. In Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[161 A. N. Fredette and R. Cleaveland. RTSL: a language
for real-time schedulability analysis. In IEEE Real-
Time Systems Symposium, 1993.

[17] R. Gerber and I. Lee. A proof system for communi-
cating shared resources. In IEEE Real-Time Systems
Symposium, 1990.

[181 T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic model checking for real-time systems. In
Proceedings of the 7th Symp. on Logic in Computer
Science, 1992.

[19] J. P. Lehoczky, L. Sha, J. K. Strosnider, andH.Tokuda.
Fixed priority scheduling theory for hard real-time
systems. In Foundations of Real-Time Computing -
Scheduling and Resource Management. Kluwer Aca-
demic Publishers, 1991.

[20] H. Lewis. A logic of concrete time intervals. In
Proceedings of the 5th Symp. on Logic in Computer
Science, pages 380-389,1990,

[21] B. Lin and A. R. Newton. Efficient symbolic ma-
nipulation of equvialence relations and classes. In
Proceeding of the Int. Workshop on Formal Methods
in VLSI Design, 199 1.

[22] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Joumal of the ACM, 20(l), 1973.

[23] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building
a predictable avionics platform in Ada: a case study.
In IEEE Real-Time Systems Symposium, 1991.

8 (2) : 244-263,i 986.

106

[24] K. L. McMillan. Symbolic model checking - un ap-
proach to the state explosion problem. PhD 1 hesis,
SCS, Carnegie Mellon University, 1992.

[25] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to
timed graphs and hybrid systems. In Lecture Notes
in Computer Science, Real-Time: Theory in Practice.
Springer-Verlag, 1992.

[26] L. Sha, M. H. Klein, and J. B. Goodenough. Rate
monotonic analysis for real-time systems. In Foun-
dations of Real-Time Computing -. Scheduling and
Resource Managpment. Kluwer Academic Publish-
ers. 1991.

107

