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Abstract 
In this papel; we describe a formal method for  mod- 

elling real-time systems and a procedure tcl compu,te the 
model's timing characteristics automatically. We present 
algorithms that compute exact bounds on the delay be- 
tween two spec$ed events. We also describe an algorithm 
to count the minimum and maximum number of times an 
event occurs between a given starting condition and an 
ending condition. These algorithms are based on symbolic 
model checking techniques [6, 241 which have been suc- 
cessfully used to find bugs in several industrial designs. 
Such techniques can be used to search exhaustively state 
spaces with up to lo3' slates. To illustrate the usefulness of 
our .method, we describe the timing analysis for  a p,atient 
monitoring system with more than states. Wc: also 
present the timing analysis and verification jor  an aircraft 
controller The sizes of the examples we verqy demonstrate 
that our tool can be applied to realistic industrial designs. 

1 Introduction 
Symbolic model checking is today an industrial-strength 

formal specification and verification methodl. It has been 
applied successfully in the verification of sev'eral industrial 
designs. It has been used to find bugs in the Futurebud 
cache coherence protocol [ 111 which is an IEEE standard 
and which has been adopted by the U.S. Navy. It is also 
currently being used by a number of semiconductor compa- 
nies in the validation of their new products. Using symbolic 
model checking techniques it is possible to verify finite 
state systems with an extremely large number of states. 
State spaces with up to lo3' states can be exhaustively 
searched in minutes. Models with more than states 
have been verified using special techniques,. This paper 
briefly introduces the symbolic model checking approach 
and describes how it can be used to verify properties of 
real-time systems. It also shows how these techniques can 
be extended to compute quantitative timing information 
that can help in understanding the behavior of the system 
as well as evaluating its performance. 
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lion under Conlract 92-DJ-294. The views and conclusions contained in 
this document are those of the authors and should not he interpreted as 
representing the official policies, either expressed or implied of the U.S. 
government. 

The model checker accepts the description of the sys- 
tem being verified in a formal specification language and 
then compiles this specification into a finite state-transition 
graph. Properties about the system are expressed as for- 
mulas in a temporal logic which uses the state-transition 
graph as a model. Model checking consists of travers- 
ing such a gwph and verifying if it satisfies the formula 
representing the property [9, lo]. Symbolic model check- 
ing uses boolean formulas to represent the state-transition 
graph [6, 241 and to represent sets of states. This repre- 
sentation makes it possible to do computations, such as 
computing successors, on sets of states instead of on in- 
dividual states. These formulas are implemented using 
binary decision diagrams (BDDs) [4] which can be ma- 
nipulated efficiently. BDDs usually generate very compact 
representations by eliminating redundancy in formulas. 

Model checking and several other methods recently pro- 
posed [3, 7, 15, 16, 171 to verify real-time systems assume 
that timing constraints are given explicitly in some nota- 
tion like temporal logic. The verifier then determines if the 
system satisfies the timing constraint or not. No other in- 
formation about its performance and behavior is provided. 
The algorithms proposed in this work extend the above tech- 
nique by computing quantitative timing information about 
the system. This allows for a more detailed analysis than 
currently available in similar tools. These algorithms pro- 
vide insight into how well a system works, rather than just 
determining whether it works at all. Our approach enables 
a designer to determine the timing characteristics of a com- 
plex system given the timing parameters of its components. 
This information is especially useful in the early phases of 
system design, when not all parameters have been fixed. In 
this case, the information provided by our algorithms can 
be used to establish how changes in a parameter affect the 
global behavior of the system. 

The first two algorithms compute the exact lower and 
upper bounds on the amount of time that elapses between 
two events, such as a request and a corresponding response. 
In our state-transition graph used to model the system, this 
corresponds to the minimum and maximum length of a 
path between two sets of states. Alternatively, we may be 
interested not only in the length of the time interval between 
two events, but also in the number of times a third event 
occurs within any such interval. For example, a subsystem 
may request execution. The time until it finishes execution 
can be critical for system correctness. However, before the 
subsystem c o m p l e t e s  its task the processor may be granted 
to other processes. The amount of time spent on other tasks 
while the subsystem is waiting is an important performance 
measure and can be computed by algorithms simiIar to those 
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mentioned above. We also present algorithms to compute 
this kind of information. Specifically, in the state-transition 
graph model, these algorithms calculate the minimum and 
the maximum number of times a specified condition can 
hold on a path from a set of starting states to a set of final 
states. 

All of our algorithms use a discrete model of time. In 
recent years, there has been considerable research on con- 
tinuous time models [l, 2, 13, 18, 20, 251. Most of these 
models use a transition relation with a finite set of real- 
valued clocks and constraints on times when transitions 
may occur. It can be argued that such models lead to more 
accurate results than discrete time models. However, con- 
tinuous time models require an infinite state space because 
the time component in the states can take arbitrary real 
values. Most verification procedures based on this type of 
model depend on constructing a finite quotient space called 
a region graph out of the infinite state space. Unfortunately, 
the region graph construction is very expensive in practice 
and current implementations of algorithms that use it can 
only handle at most a few thousand states. Because we use 
a discrete model of time, we are able to take advantage of 
symbolic techniques [6,24] in which the transition relation 
is represented by a binary decision diagram (BDD). This 
enables us to handle systems that are many orders of mag- 
nitude larger than can be handled using continuous time 
techniques. 

Other approaches for analyzing real-time systems exist. 
The rate monotonic scheduling theory (RMS) [ 19, 22, 261 
is one example. Given a set of processes and their timing 
constraints, it proposes a priority assignment algorithm that 
assigns higher priorities to processes with shorter periods. 
Optimal response time is guaranteed by the RMS theory 
if priorities are assigned according to this rule [22]. The 
RMS theory proposes a schedulability test based on total 
CPU utilization; a set of processes (which have priorities 
assigned according to RMS) is schedulable if the total uti- 
lization is below a computed threshold. If the utilization 
is above this threshold, schedulability is not guaranteed. 
This analysis imposes a series of restrictions on the set of 
processes. Only certain types of processes are considered 
with limitations, for example, on periodicity and synchro- 
nization. 

Another approach to schedulability analysis uses algo- 
rithms for computing the set of reachable states of a finite- 
state system [16, 171. The algorithms construct the model 
with the added constraint that whenever an exception oc- 
curs (e.g. a deadline is missed) the system transitions to a 
special exception state. Verification consists of computing 
the set of reachable states and checking whether the ex- 
ception state is in this set. No restrictions are imposed on 
the model in this approach, but the algorithm only checks 
if cxccptions can occur or not. Quantitative information 
is not generated, and other types of properties cannot be 
verified, unless encoded in the model as exceptions. 

In comparison, our method does not impose any re- 
striction except that the system be modeled as a set of pro- 
cesses that run in parallel and are defined by state-transition 
graphs. For example, the actual functional behavior of each 
process can be modeled and analyzed. Schedulability is de- 
termined by computing the minimum and maximum execu- 
tion times for all processes. The process set is schedulable 
if and only if each process is guaranteed to finish execution 

before its next period starts. Our technique always deter- 
mines if the set of processes is schedulable or not, unlike 
RMS analysis, which may not provide any schedulability 
information if utilization is above the computed threshold. 
If the processes are not schedulable, our algorithms deter- 
mine which specific deadlines are missed and by how much. 
When no deadline is missed, the same results provide re- 
sponse times for each process, an important performance 
measure for real-time systems. 

Several industrial real-time systems have been modelled 
and verified using the algorithms described in this paper. 
Model checking techniques have been used to verify their 
logical correctness, while quantitative algorithms have been 
used to evaluate their performance. The first example is a 
medical monitoring system. Sensors connected to a pa- 
tient continuously measure various parameters of his or her 
condition. The system records this data for analysis by 
physicians and also issues an alarm when abnormal condi- 
tions occur. Priority driven concurrent processes are used to 
control the various components of the monitor. The analy- 
sis of the system consists of verifying if the performance of 
the controller satisfied its expected response time. The re- 
sults produced by our quantitative algorithms also allowed 
us to identify inefficiencies in the design and suggest opti- 
mizations. The modified model was then analyzed and its 
performance once again evaluated. The information gener- 
ated by the algorithms made it possible not only to analyze 
the original design, but also to improve it. 

The second example is an aircraft control system. This 
example is derived from the one described in [23]. Its tim- 
ing requirements are representative of those found in actual 
aircraft. We model the software that controls the various 
components of an airplane, and gather timing information 
about the system using the tools described above. The 
system consists of set of priority driven processes, where 
each process is responsible for a subsystem of the aircraft. 
Subsystems being controlled include navigation, display, 
radar and weapons. We use the algorithm defined by the 
rate monotonic scheduling theory [ 19, 22, 261 to make the 
system predictable. The original analysis of the example 
was able to show that only some of the processes were 
schedulable, while no information was given on the oth- 
ers [23]. Using the algorithms presented in this paper, we 
were able to determine the schedulability of the complete 
task set for this example. We were also able to determine 
other critical performance information, such as the reaction 
time of the weapons subsystem. In both examples the state 
space of the final model has between 10l3 and 10’’ states, 
but its logical properties and timing characteristics can be 
computed in few seconds on a i486 based workstation. The 
memory requirement for this computation was about two 
megabytes. 

These examples demonstrate that our tools can be used 
for the specification and verification of designs of real-time 
systems used in industry . The fact that most properties 
could be computed in seconds shows that even larger ex- 
amples can be modelled and verified. We believe that the 
techniques described are mature enough to be used in an 
industrial environment, and that they can be of significant 
assistance in improving the efficiency and reliability of real- 
time designs. 

The remainder of the paper is organized as follows. The 
next section defines BDDs, which play an important role 
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in our symbolic methods. Section 3 explains syimbolic 
model checking. In Section 4 the algorithms for computing 
the longest and shortest paths between two state sets are 
presented. Algorithms for counting the number of states 
that satisfy a given condition along a path between two 
sets of states are described in section 5.  Sections 6 and 
7 present the verification and timing analysis of a medical 
monitoring system and an aircraft controller respectively. 
Section 8 concludes the paper. 

2 Binary Decision Diagrams 
Binary decision diagrams (BDDs) are a canonical rep- 

resentation for Boolean formulas [4]. A BDD is similar to 
a binary decision tree except that its structure is a directed 
acyclic graph rather than a tree. This allows nodes and 
substructures to be shared. The vertices of the graph are la- 
beled with the variables of the Boolean fonnula, except for 
the two “leaves” which are labeled with 0 and 1. To insure 
canonicity, a strict total order is placed an the variables as 
one traverses a path from the “root” to a ‘‘leaf.’’ The edges 
are labeled with 0 or I. For every truth assignment there 
is a corresponding path in the BDD suclh that at vertex 2, 
the edge labeled 1 is faken if the assignment sets z: to 1; 
otherwise, the edge labeled 0 is taken. If the path ends in 
the “leaf” labeled 0, tlhen the assignment does not satisfy 
the formula, and conversely, if the “leaf” reached is labeled 
1, then the formula is satisfied by the assignment. Figure 1 
illustrates the BDD for the Boolean formula (a Ab) v (c Ad) .  

Figure 1: BDD for (a A b )  V (c 12 d )  

In [4], Bryant shows that given a variable ordering, the 
BDD for a formula is mique. The paper also gives efficient 
algorithms for computing the BDDs for -f and f V g  given 
the BDDs for f and g. For the purposes of symbolic model 
checking, it is also necessary to quantify over Boolean 
formulas. Bryant describes an algorithm for computing the 
BDD of a restricted formula such as f IV=0 or f v = l .  This 
allows us to compute the BDD for the formula 3v i f., where 
ti is: aBoolean variable and f is aBoolean formula, as f IV=0 
Vf  Iv=l .  However, our implementation uses other known 
algorithms for performing quantification which are more 
efficient when multiplle variables need to be: quantified. 

All of the formulas used in our algorithms are repre- 
sented by BDDs. The .BDDs for these formulas are built up 
in a bottom-up manner. The set of atomic propositions in 

these formulas is precisely the set of state variables, there- 
fore the BDD for an atomic proposition consists simply of 
a single BDD variable. Since a formula is built up from 
atomic propositions using Boolean connectives, the BDDs 
for a formula can be constructed using the BDD operations 
discussed in the previous paragraph. In fact, the implemen- 
tation allows arbitrary state formulas of computation tree 
logic (CTL) [ 101. These formulas may contain branching 
time operators as well as logical connectives, but for the 
sake of simplicity, this discussion is limited to Boolean 
formulas. 

3 SymboIic Model Checking 
Temporal logic model checking is a technique for de- 

termining the correctness of finite-state systems [9, 101. 
In this technique, specifications are written as formulas in 
a propositional temporal logic and computer systems are 
represented by state-transition graphs. Verification is ac- 
complished by an efficient breadth first search procedure 
that views the transition system as a model for the logic, 
and determines if the specifications are satisfied by that 
model. There are several advantages to this approach. An 
important one is that the procedure is completely auto- 
matic. Another advantage is that, if the formula is not true, 
the model checker will provide a counterexample. The 
counterexample is an execution trace that shows why the 
formula is not true. This is an extremely useful feature 
because it can help locate the source of the error and speed 
up the debugging process. Another advantage is the ability 
to verify partially specified systems. Useful information 
about the correctness of the system can be gathered before 
all the details have been determined. This allows the verifi- 
cation of a system to proceed concurrently with its design. 
Consequently verification can provide valuable hints that 
will help designers eliminate errors earlier and define better 
systems. Model checkers achieve great efficiency through 
the use of symbolic implementation techniques [24]. Sym- 
bolic model checkers represent states and transitions using 
boolean formulas. Implementing these boolean formulas as 
BDDs leads to very efficient algorithms for model checking 
that are able to verify systems with extremely large state 
spaces. This section will first describe the method used to 
represent the state-transition graph using boolean formulas. 
It will then briefly describe the logic used to express the 
properties to be verified. The model checking algorithm 
will not be presented here for brevity. More information on 
symbolic model checking can be found in [7, 5,  6, 12,241. 

Representing the Model 
A model of the system in our algorithm is a labeled 

state-transition graph M .  The key to the efficiency of the 
algorithm is lo use BDDs to represent the labeled state- 
transition graph and to verify if the formula is true or not. 
The following method will be used to represent the tran- 
sition relation as a BDD. Assume that system behavior is 
determined by the boolean variables V = {WO, . . . , ti, - 1 }. 
Let V’ = {wL, . . . , be a second copy of these vari- 
ables. We will use the variables in V to represent the value 
of the variables in the current stake, and the variables in V’ 
to represent the value in the next state. The relationship be- 
tween values of variables in the current and the next states 
is written as a boolean formula using V and V’. This will 
generate the boolean formula N representing the transition 
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relation. This formula will then be converted to a BDD. 

N(vo , .  . . , Wn-I, .U;, ‘ ’ .,.;-I) 

Computation Tree Logic 
Computation tree logic, CTL, is the logic used by in our 

model checker to express properties that will be verified. 
Computation trees are derived from state transition graphs. 
The graph structure is unwound into an infinite tree rooted 
at the initial state, as seen in figure 2. Paths in this tree 
represent all possible computations of the program being 
modelled. Formulas in CTL refer to the computation tree 
derived from the model. CTL is classified as a branch- 
ing time logic, because it has operators that describe the 
branching structure of this tree. 

Formulas in CTL are built from atomic propositions, 
where each proposition corresponds to a variable in the 
model, boolean connectives 1 and A, and temporal opera- 
tors. Each operator consists of two parts: a path quantifier 
followed by a temporal operator. Path quantifiers indicate 
that the property should be true of all paths from a given 
state (A), or some path from a given state (E). The tempo- 
ral quantifier describe how events should be ordered with 
respect to time for a path specified by the path quantifier. 
They have the following informal meanings: 

0 F p (p holds sometime in the future) is true of a path 
if there exists a state in the path that satisfies p. 

0 G p (p holds globally) is true for a path if p is satisfied 
by all states in the path. 

0 X p (p holds in the next state) means that p is true in 
the next state of the path. 

0 p U $J (p holds until 4 holds) is satisfied by a path if 
1c, is true in some state in the path, and in all preceding 
states, p holds. 

Some examples of CTL formulas are given below to 
illustrate the expressiveness of the logic. 

0 

0 

0 

4 

AG(reg + A F  a c k ) :  It is always the case that if 
the signal reg is high, then eventually ack will also be 
high. 

EF(starteclA Treacly): It is possible to get to a state 
where started holds but r e a d y  does not hold. 

AG EF restart: From any state it is possible to get 
to the restart state. 

AG(send -+ A[sencl U recu] ) :  It is always the case 
that if send occurs, then eventually rem is true, and 
until that time, send must remain true. 

Lower and Upper Bound Algorithms 
This section presents the first two algorithms for com- 

puting quantitative information of real-time systems. These 
algorithms compute minimum and maximum time delays 
between specified events. A real-time system is mod- 
elled as a state-transition graph in the way described pre- 
viously. Recall that our algorithms work on boolean for- 
mulas representing sets of states. For example, given a 
formula representing a set of states S, the formula for 

T ( S )  = {s’ I N(s , s ’ )  holds for some s E S}, the set 
of all successors of states in S, can be constructed from the 
formula for S and the formula for the transition relation in 
one step, regardless of the number of states in S and T ( S ) .  
In particular, if S WO, . . . , u n - l )  is the formula for S then 
the formula for T [ S )  is 3v0 ,  . . . , v,-l[S(vo, . . . ., ~ ~ - 1 )  A 
N(vo,  . . . , ~ ~ - 1 ,  ~ 6 ,  . . . , wk-,,)]. The fact that all opera- 
tions consider sets of states instead of individual states is 
one of the main reasons for the efficiency of our method. 

We consider the lower bound algorithm first (figure 3). 
The algorithm takes two sets of states as input, start and 
Jinal. It returns the length of (i.e. number of edges in) a 
shortest path from a state in start to a state infinal. If no 
such path exists, the algorithm returns infinity. Recall that 
the function T ( S )  gives the set of states that are successors 
of some state in S. The algorithm also uses two variables 
R and R’ to represent sets of states. The function T ,  the 
sets R and R‘, and the operations of intersection and union 
can all be easily implemented using BDDs. 

proc lower (start, final) 
2 = 0;  
R =start; 
R’ = T ( R )  U R; 
while (R‘ # R A R n final = 0) do 

i = i + l ;  
R= R’; 
R’ = T(R’) U R’; 

then return i; 
else return 00; 

if (R n f inal # 0) 

Figure 3: Lower Bound Algorithm 

The first algorithm is relatively straightforward. Intu- 
itively, the loop in the algorithm computes the set of states 
that are reachable from start. If at any point, we encounter 
a state satisfyingfinal, we return the number of steps taken 
to reach the state. 

Next, we consider the upper bound algorithm (figure 4). 
This algorithm also takes start andfinal as input. It returns 
the length of a longest path from a state in start to a state in 
jinal. If there exists an infinite path beginning in a state in 
start that never reaches a state in$nal, the algorithm returns 
infinity. The function T-’(S’) gives the set of states that 
are predecessors of some state in S’ (i.e. T-’(S‘) = {s I 
N ( s ,  s’) holds for some s’ E S’}). R and R’ will again 
be sets of states. We also denote by not$nal the set of 
all states that are not in final. As before, the algorithm is 
implemented using BDDs. 

The upper bound algorithm is more subtle than the pre- 
vious algorithm. In particular, we must return infinity if 
there exists a path beginning in start that remains within 
notfinal. A backward search from the states in notfinal is 
more convenient for this purpose than a forward search. We 
use the following two definitions in proving the algorithm 
correct: 

Si is the set of states at the beginning of a path con- 
taining i states, all contained in notJinal. 
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Figure 2: State itransition graph and corresponding computation tree 

proc upper (start, final) 
i = 0; 
R =TRUE, 
R’ =not&” 
while (R’ # R A R’ n start # 0) do 

i = i - t l ;  
R = 12’; 
R’ = T-’(R’) n not-final; 

then return CO; 

else return i ;  

if ( R  = R’) 

Figure 4: Upper Bound Algorithm 

M is the number of states in a longest path beginning 

Although ultimately we are interested in the number of 
edges in a longest path, it is easier to reason wlhen we 
count the number of states in a path. The correctness of 
the algorithm then follows from proving that the following 
exipressions are loop invariants: i 5 M ;  R = Si; and 
R’ = Si+l. The proof can be found in [SI. 

5 Condition Counting Algorithms 
In many situations we are interested not only in the 

length of a path leading from a set of starting states to a set 
of final states, but also in measures that depend on the num- 
ber of states on the path that satisfy a given condition. For 
example, we may wish to determine the rninimuni (max- 
imum) number of times a condition holds on a path, or 
the minimum (maximum) percentage of states that satisfy 
a given condition, on any path from starting to final states. 

Both algorithms in this section take as input three sets of 
states: start, cond and final. The algorithims compute the 
minimum and the maximum number of st,ates that belong 
to cond, over all finite paths that begin with a state in start 
and terminate upon reaching$nal. 

To simplify the algorithms, we assume that any path 
beginning in start must reach a state in ,final in a finite 
number of steps. This requirement is necessary to ensure 

inside start and contained within not-j’inal. 

that the minimum (maximum) is well-defined. It can be 
checked using the upper bound algorithm described in the 
previous section. Finally, we assume that all computations 
involve only reachable states. This can be achieved by 
intersecting start with the set of reachable states computed 
a priori. 

To keep track at each step ofthe number of states in cond 
that have been traversed, we define a new state-transition 
system, in which the states are pairs consisting of a state 
in the original system and a positive integer. Thus, if the 
original state-transition graph has state set S, then the aug- 
mented state set will be S, = S x IN. 

If N C S x S is the transition relation for the original 
state-transition graph, we define the augmented transition 
relation N ,  S, x S, as 

N a ( ( s ,  k ) ,  (s’, IC’)) = N ( s ,  s’) A 
(s’ E c o n d A  k’ = k + 1 V 
s’ e cond A k’ = k )  

In other words, there will be a transition from (s, k )  to 
(s’, k’) in the augmented transition relation N ,  iff there is 
a transition firom s to s’ in the original transition relation 
N and either s’ E cond and k‘ = k + 1 or s’ cond and 
k‘ = k .  We also define T to be the function that for a 
given set U C S, returns the set of successors of all states 
in U .  More formally, T (  U )  = {U’ I N ,  ( U ,  U’) holds for 
some U E U } .  In the actual BDD-based implementation, 
an initial bound k,,, can be selected to achieve a finite 
representation for k ,  and new BDD variables can be added 
dynamically if this bound is exceeded. The system is still 
finite-state because all paths we consider are finite and k is 
bounded by their maximum length. 

The algorithm for computing the minimum count is 
given in figure 5. In the algorithm text, Final and Notgnal 
denote the sets of states i n j n a l  and S - final, paired with 
all possible values of k .  More formally: 

Final = { ( s ,  k )  I s E f inal,  k E IN} 

and 

Not-final = { (s, k )  I s f inal,  k E IN} 

101 



proc mincount (start, cond, final) 
current-min = 00; 
R = { ( s ,  1) I s E start n cond}u 

~ 

{(s, 0) I s E start n cond}; 

Reached-final = R n Final; 
i f  Reached-final # 0 then 

loop 

m = min{k 1 ( s ,  k }  E Reached-final}; 
i f m  < current-man then 

current-min = m; 
R' = R n Not-final; 
i f  R' = 0 then return current-min; 
R = T(R');  

endloop; 

Figure 5: Minimum Condition Count Algorithm 

The algorithmuses R to represent the state set in Sa reached 
at the current iteration, while Reached-final and R' are its 
intersections with Final and Not(na1 respectively. Variable 
current-min denotes the minimum count for all previous 
iterations. The minimum computation over the set of values 
of k in a formula S can be done by existentially quantifying 
the state variables (computing Ii' = { k  I 3 ( s ,  k )  E S}) 
and following the leftmost nonzero branch in the resulting 
BDD, provided it uses an appropriate variable ordering. 
An efficient algorithm that does not depend on the variable 
ordering is given in [21]. 

At iteration i, the algorithm considers the endpoints of 
paths with i states. The reached states that belong to f i -  
nal are terminal states on paths that we need to consider. 
The minimum count for these paths is computed, using the 
counter component of the path endpoints, and the current 
value of the minimum is updated if necessary. For the 
reached states that do not belong tofinal, we continue the 
loop after computing their successors. If all reached states 
are infinal, there are no further paths to consider and the 
algorithm returns the computed minimum. 

We reason about the correctness of the algorithm by 
showing that the following invariants are true before the ith 
iteration of the loop: 

0 11: A pair ( s ,  k )  belongs to R iff s can be reached 
from start on a path with i states, on which k states 
are in cond, and only the last state is allowed to be in 
final. 

0 I2: current-min is the minimum number of states in 
cond over all paths with less than i states that begin in 
start and terminate upon reaching $final, or infinity if 
there are no such paths. 

Initially, R contains the states in start, paired with 1 if 
they belong to cond and with 0 otherwise, and current-min 
is infinity. Therefore, both invariants hold before the first 
loop iteration. 

By invariant 11, the intersection Reached-f inal = R n 
Final contains all states infinal reached for the first time 
by a path containing i states. The count component k of a 
reached state is, again by I , ,  the number of states in cond 

proc maxcount (start, cond, final) 
current-max = -a; 
R = {(s, I )  I s E start n __ cond}u 

{ ( s ,  0 )  1 s E start n cond}; 

Reached-final = R n Final; 
i f  Reached-final # 0 then 

loop 

m = max{k I (s, k }  E Reached-final}; 
i f  m > current-max then 

current-max = m; 
RI = R n  Not-final; 
if R' = 0 then return current-max; 
R = T(R'); 

endloop; 

Figure 6: Maximum Condition Count Algorithm 

on such a path. Computing the minimum m of these values 
and setting current-min = m if m is smaller ensures that 
current-min now accounts for paths with up to i states. 
Therefore, 12 will hold at the beginning of the next iteration. 

Since we only consider paths that reachfinal once, it 
is correct to continue the state traversal only from states in 
R' = Rn h'ot-final. If this set is empty, there are no further 
paths, with more that i states, that reachfinal. Therefore, 
by invariant 12, current-min is the correct return value. 
For the case where the loop is continued, the definition of 
transition relation ensures that the count component in the 
augmented state space is incremented on a transition step 
if and only if the new state is in cond. This implies that 
the count component k represents at all times the number 
of states in cond traversed on a path. Consequently, 11 will 
hold again for the new value of R obtained as the image of 
RI under T. 

Next, we argue that the algorithm terminates. The pre- 
condition ensures that all paths from start reach final in 
a finite number of steps. Thus, we will eventually have 
R' = R n Not-final = 0, and the algorithm correctly re- 
turns the value current-min. 

As an optimization, the number of iterations required in 
certain cases can be reduced by introducing the line 

R' = R' n { ( s ,  I ; }  I s E S A k < current-min} 

before testing R' = 0. A11 paths with a count of at least 
currentmin can be safely discarded, which reduces the 
search to those paths on which the count for cond is still 
smaller than the currently achieved minimum. 

Finally, we note that the algorithm for the maximum 
count, given in figure 6, has the same structure and can 
be obtained by replacing min with max and reversing the 
inequalities. Variants of both algorithms can be used to 
compute other measures that are a function of the number of 
states on a path that satisfy a given condition. For example, 
we can determine the minimum and the maximum number 
of states belonging to a given set cond over all paths of a 
certain length 1 in the state space. 
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6 A Medical Monitoring Example, 
This section presents a patient monitoring system de- 

rived from the one presented in [ 141. It is a realistic example 
that models many features existing in actual systems. The 
exaniple has been expanded to show how tlhe algorithms 
described in this paper can be used to analyze models of in- 
dustrial complexity. The resulting model for this example 
has more than 1013 states but its timing characteristics can 
be computed in a few seconds. 

The system consists of a set of processes and can be 
seen in figure 7. The acquire process is the only peiriodic 
process in the system, all others are aperiodic. Acquire 
executes every 20ms, and its function is to rlead data from 
sensors monitoring the patient. Usually, the data read by 
the sensors contain spurious information. In order to elim- 
inate erroneous data, the output of acquire is sent to the 
,filter process. Filter is an aperiodic process. It is triggered 
whenever data is read from the sensors, t.hat is, whenever 
acquire finishes its execution. The filter proicess is depen- 
dent on data generated by the acquire process. The same 
dependency pattern is also used to trigger execution of the 
other aperiodic processes. AfterJilter executes, its results 
are analyzed by the patient condition detection processes. 
Filter preprocesses the data generated, and may decide to 
start the detection processes or not, depending on thle data 
available. Three such processes are modelled in this ex- 
ample to detect abnormal conditions in the blood pressure, 
heart rate and temperature. The detection processes c m  is- 
sue an alarm after analyzing the data. If the alarm process is 
executed, it also starts the audio process that generates the 
actual alarm signal. Finally, the Jilter process; also sends its 
data to the display and recorder processes, that display the 
data on the screens and record it in some non-volatile-media 
for future analysis. The execution times for the processes 
in the system can be summarized as follows. The acquire 
process executes for lms, the filter process executes for 
3ms, and all other processes execute for 2ms;. 

Most processes in this system are aperiodic in na- 
ture. Because of this., methods such as the rate mono- 
tonic scheduling (RMS) [19, 22, 261 cannot be directly 
used to analyze this process set. For example, the as- 
signment of priorities to processes is more complex than 
in the periodic case which can use the IRMS algorithms. 
In this example priorities have been assigned heuristically, 
and quantitative algorithms have been used to investigate 
the efficiency of the assignment. Initially, the priority order 
defined was, from the highest to the lowest priority process: 
acquire,$ltel; bloodpressure, heart-rate, temperature, dis- 
play, recordel; alarm, a.nd audio. 

The aperiodic nature of the processes also makes it dif- 
ficult to determine the schedulability requirements. Except 
for the acquire process, no other process hias a deadline. 
Nevertheless, the timing constraints of the system can be 
easily identified. The acquire process has ;a period and a 
deadline of 20ms. The timing constraints for the other pro- 
cesses can be defined in several ways. A straightforward 
way is to require that all processes to finish before the next 
execution of acquire. Our algorithms can ddermine if the 
process set satisfies this constraint by computing minimum 
and maximum times between the moment when acquire 
requests execution and the moment when each process ter- 
minates. However, this requirement can be too restrictive 

in some cases. Overlapping the execution of consecutive 
process instantiations is acceptable if the response time can 
still be bounded. The algorithms described in this paper 
can determine response times for all processes by checking 
if there exists a process that can execute for an unbounded 
amount of time. If there is such a process, then the system 
is not schedulable. If not, these results allow the designers 
to check if the response times are acceptable. Both results 
have been computed for this example, and are presented in 
the following table. 

Process 
-- 

acquire 
filter 

blood pressure 
heart rate 

temperature 
display 
recorder 

alarm 
audio 

Period 

20 

Execution Times 
-- 
min 
1 

4 
6 
6 
6 
6 
8 

12 
14 

r 
max 

1 
4 

__ 

00 
00 
00 
12 
14 
CO 
00 

I - 
min 

1 
3 
2 
2 
2 
2 
4 
6 
2 

- 

I - 
max 

1 
3 
2 
4 
6 
8 

10 
10 
2 

- 

e (1) Minimum and maximum times between the start 
of acquire and the end of execution of the process. If 
the maximum time is less than the period of acquire, 
then the process will finish execution before the next 
instantiation of acquire is started. 

e (2) Minimum and maximum times between the start 
and end of execution of each process. If this time is 
less than infinity, then the system is schedulable. 

In some cases, it is possible that the condition detection 
processes are never executed, as well as the alarm and 
audio processes. Because of this, the maximum time from 
the start of acquire until these processes finish is infinity. 
However, in many situations it is important to know the 
maximum time until an event provided it will occur. We 
can change the model to reflect that an alann will always be 
issued, and compute such information. In this model, we 
determined that from the moment acquire reads abnormal 
data until the alarm sounds, less than 18ms will elapse 
(1 6ms for alarm and 18ms for audio). 

The results produced by our algorithms can provide 
more information about the behavior of the system than 
just determining its schedulability. For example, we can 
see from the data presented that the alarm and audio pro- 
cesses are the ones with highest response times. However, 
sounding the alarm is a critical function that should not be 
postponed by other functions such as recording the data 
on tape. One way to avoid this problem is by raising the 
priority of alarm to avoid interference from less important 
processes and compute the response times for the modi- 
fied model. \Ne raised the priority of the alarm process 
by changing the priority order to: acquire, jiltel; alarm, 
bloodpressure, heart-rate, temperature, display, recorder, 
and audio. Tlne response times were computed again, and 
the results are presented in the table below: 
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r - - - - - - - - - - i  
I patient condition I 
I detection I 
I I 

Process 

acquire 
filter 

blood pressure 
heart rate 

temperature 
display 
recorder 

a1 arm 
audio 

Period 

----xi- 

Figure 7: The patient monitoring system 

Execution Times 

18 
20 

8 0 3  
14 00 

14 
16 

00 

Some unexpected results can be seen in this table. The 
system is no longer schedulable. The audio process can 
execute for an unbounded amount of time. By comparing 
the two tables we see that the maximum execution times of 
most processes increased. But no additional load has been 
added to the system. In order to verify why this behavior 
was occurring we used the counterexample feature of the 
SMV model checking system [24]. A counterexample is 
an execution trace that violates a property specified. By 
expressing the property that the audio process would always 
finish execution, we were able to produce a counterexample 
which showed that this property was false. The execution 
trace revealed the following execution sequence leading to 
the problem: 

acquire; filter; bloodpressure; alarm; heartyate; 
alarm; temperature; alarm; display; recorder; acquire; 
filter; ... 

We can see from the trace above that the problem is 
caused by the fact that alarm executes three times for the 
same instantiation of acquire when all detection processes 
find abnormalities. This causes an overload in the system 
making it unschedulable. The reason this did not happen 
before was that every time a detection process triggered the 
alarm process, it requested execution, but it would only ex- 
ecute after all detection processes executed. One execution 
responded to all alarm conditions. A simple solution to 

this problem is to lower the priority of alarm and change 
the design so that multiple alarms are handled correctly. 
The final priority order is: acquire, filtel; bloodpressure, 
heartyate, temperature, alarm, display, recorder, and au- 
dio. The results computed using this priority order showed 
that the system was schedulable. 

The condition counting algorithms can also be used to 
analyze the behavior of the system. If the designer believes 
that the alarm process is being blocked by less important 
processes, he or she can use the condition counting algo- 
rithms to quantify this effect, For example, we can compute 
how much time is spent on the execution of the display or 
the recorder processes while alarm is requesting execution. 
The parameters of mincount and macount can be specified 
as follows. The initial state is the start of alarm, the final 
state is the end of execution of alarm, and the condition 
to be counted is the processor granted to either display 
or recorder. Using the first priority order presented, the 
time spent on display and recorder while alarm is blocked 
is 4ms. With the last priority order this time is zero, as 
expected. 

The algorithms described in this paper allow us to 
analyze the medical monitoring example in many ways. 
Schedulability is determined by computing the response 
times of all processes. The reaction time to an event is 
computed in the same manner. We can determine the min- 
imum and maximum latencies between the occurrence of 
an abnormal event and its recognition by the system (in this 
case by sounding the alarm). The algorithms also allow us 
to study how changes in the parameters affect global behav- 
ior. In this example we can see the impact that the priority 
order has on response times. This type of analysis can be 
very useful in validating the design of industrial real-time 
systems. 

7 An Aircraft Controller 
As another example of how our techniques can be ap- 

plied in the verification of realistic real-time systems, this 
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* 'Weapon protocol is aperiodic with a deadline of 200ms. 
* *  Weaponrelease has a period of 200ms, but its deadlineis 5ms. 

section briefly presents the verification of an aircraft con- 
troller. A complete analysis of this example can he found 
in [8]. The control system for an airplane can be character- 
ized by a set of sensors and actuators connected to a central 
processor. This processor executes the software to analyze 
sensor data and control the actuators. Our model describes 
this control program and defines its requirements so that the 
specifications for the airplane are met. The requiirements 
used are similar to those of existing military airciraft, and 
thle model is similar to the one described in [23]. 

The aircraft controller is divided into systems ;and sub- 
systems. Each system performs a specific task in con- 
trolling a component of the airplane. The most important 
systems are implemented in our model to provide a real- 
istic representation of the controller. The systems being 
controlled include navigation, radar control, weapons and 
display. Each system is composed of one or more subsys- 
tems. Timing constraints for each subsystem are derived 
from factors such as required accuracy, human iresponse 
cliaracteristics and hardware requirements. The following 
table presents the subsystems being modelled, as well as 
their timing requirements. Concurrent processes are used 
to implement each subsystem. In order to enforce the dif- 
ferent timing constraints of the processes, priority schedul- 
ing is used. Predictability is guaranteed by scheduling the 
processes using RMS [ 19,221. 

We have implemented this control system in the SMV 
language [24]. The SMV model checker has been used to 
verify its functional correctness, while its timing, correct- 
ness has been checked using the quantitative algorithms 
described in this paper. Both a preemptive scheduler and 
a non-preemptive scheduler were implemented to analyze 
the effects of preemption in the response times. Schedula- 
bility was determined by computing response times of each 
process and checking that each process met its deadline. 
In this example the deadlines are the same as the periods 
(except for the weapon release subsystem). The follow- 
ing table summarizes the execution times computed by the 
algorithms. Processes are shown in decreasing order of pri- 

Subsystem 

Weapon release 
Radar track filter 
Contact mgmt. 
Data bus poll 
Weapon aim 

Radar target upd 
NAV update 

Display graphic 
Display hook upd 
Track target upd 
Weapon protocol 
NAV steer cmds. 
Display store upd 

Display keyset 
Display status upd 

dead 
line 

5 
25 
25 
40 
50 
50 
50 
80 
80 

100 
200 
200 
200 
200 
200 

- 

- 

Execution Times 
preempt - 

min 
3 
2 
7 
1 

10 
12 
20 
10 
14 
26 

1 
35 
36 
37 
40 

- 

__ 

- 
max 

3 
5 

10 
11 
14 
19 
34 
44 
46 
51 
21 
85 
95 
96 
99 

- 

__ 

no Dreemot - 
min 

3 
2 
7 
1 
2 

12 
20 
10 
14 
26 
3 

36 
37 
38 
41 

- 

- 

- 
max 

9 
10 
15 
14 
18 
19 
27 
43 
47 
51 
46 
74 
97 
98 

101 

- 

- 

ority. Deadlines are also shown so that schedulability can 
be easily checked. The minimum and maximum execution 
times are given for both the preemptive and non-preemptive 
schedulers. 

We can see from the table above that the process set is 
schedulable using preemptive scheduling. Notice however 
that preemption does not have a big impact on response 
times. Except for the most critical process, all others main- 
tain their schedulability if a non-preemptive scheduler is 
used. Moreover, we can see that non-preemption causes 
weapon release to miss its deadline, but by a relatively 
small amount. If a preemptive scheduler were expensive, 
reducing the CPU utilization slightly might make the com- 
plete system schedulable without changing the scheduler. 
By having such information the designer can easily assess 
the impact of various alternatives to improve the perfor- 
mance, without having to change the implementation. 

8 Conclusion 
This paper presents a formal method to express and com- 

pute timing characteristics of real-time systems. A descrip- 
tion of the system is first compiled into a state-transition 
graph represented using binary decision diagrams. Sym- 
bolic model checking algorithms compute the minimum 
and maximum lengths of paths between two state sets. In 
addition, an algorithm for computing the exact upper and 
lower bounds on the number of times a condition can hold 
on any pathbetween two state sets is presented. Using these 
techniques we have verified two examples which model ac- 
tual industrial applications. These examples demonstrate 
that our tools can handle applications of realistic size and be 
useful in the design process of industrial real-time systems. 

The symbolic techniques employed have made our al- 
gorithms very efficient. BDDs provide a concise repre- 
sentation for the state-transition graph and for state sets. 
This representation allows us to handle examples of realis- 
tic complexity. State-transition graphs with IO3' states can 
be traversed in minutes. 
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Our method computes quantitative information that can- 
not be directly obtained using other approaches. The 
bounds computed by our algorithms allow us to make as- 
sertions about system performance rather than just about its 
correctness. Furthermore the versatility of our method is in- 
dicated by the fact that practically any real-time design can 
be represented. The only restriction imposed on the system 
being analyzed is that it be modeled as a state-transition 
graph. 

Finally, our techniques can be used during the design 
process to evaluate design decisions. For example, in the 
medical monitoring system, inefficiencies were identified 
and the computed information led to suggestions for possi- 
ble improvement. The model was modified to account for 
these changes. The analysis of the new system confirmed 
that the changes were indeed optimizations. 

The examples analyzed in this work indicate that the in- 
formation obtained by our method can be extremely useful 
in the development of real-time systems. We are confident 
that this method can be used successfully in improving the 
efficiency and reliability of real-time system design. 

References 
[l] R. Alur, C. Courcourbetis, and D. Dill. Model- 

checking for real-time svstems. In Proceedinas of 
the 5th Symp. on Logic L$ Computer Science, &ge”s 
414425,1990. 

[2] R. Alur and D. Dill. Automata for modeling real-time 
systems. In Lecture Notes in Computer Science, 17th 
ICALP. Springer-Verlag, 1990. 

[3] R. Alur and T. A. Henzinger. Logics and models of 
real-time: a survey. In Lecture Notes in Computer 
Science, Real-Time: Theory in Practice. Springer- 
Verlag, 1992. 

[4] R. E. Bryant. Graph-based algorithms for boolean 
function manipulation. IEEE Transactions on Com- 
puters, C-35(8), 1986. 

[5]  J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. 
Dill. Sequential circuit verification using symbolic 
model checking. In 27th ACMLEEE Design Automa- 
tion Conference, 1990. 

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, 
and J. Hwang. Symbolic model checking: 10’’ states 
and beyond. In LICS, 1990. 

171 S. V. Campos and E. M. Clarke. Real-time sym- 
bolic model checking for discrete time models. In 
First AMAST International Workshop in Real-Time 
Systems, 1993. 

[8] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, 
and H. Hiraishi. Computing quantitative characteris- 
tics of finite-state real-time systems. Technical Re- 
port CMU-CS-94- 147, Carnegie Mellon University, 
School of Computer Science, 1994. 

[9] E. M. Clarke and E. A. Emerson, Synthesis of syn- 
chronization skeletons for branching time temporal 
logic. In Logic of Programs: Workshop, Yorktown 
Heights, NX May 1981. Springer-Verlag, 1981. vol- 
ume 13 1 of Lecture Notes in Computer Science. 

[IO] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Auto- 
matic verification of finite-state concurrent systems 
using temporal logic specifications. ACM Trans- 
actions on Programming Languages and Systems, 

[ 111 E. M. Clarke, 0. Grumberg, H. Hiraishi, S. Jha, D. E. 
Long, K. L. McMillan, andL. A. Ness. Verification of 
the Futurebus+ cache coherence protocol. In L. Clae- 
sen, editor, Proceedings of the Eleventh International 
Symposium on Computer Hardware Description Lan- 
guages and their Applications. North-Holland, Apr 
1993. 

[ 121 E. M. Clarke, 0. Grumberg, and D. E. Long. Verifica- 
tion tools for finite-state concurrent systems. In REX 
’93 SchoolAGorkshop: A Decade of Concurrency, No- 
ordwijkerhout, The Netherlands, June 1993. to appear 
in Springer Lecture Notes in Computer Science. 

[ 131 C. Courcoubetis and M. Yannakakis. Minimum and 
maximum delay problems in real-time systems. For- 
mal Methods in System Design, 1, 1992. 

[ 141 P. J. Drongowski. Software architecture in realtime 
systems. In IEEE Workshop on Real-Time Applica- 
tions, 1993. 

[15] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srini- 
vasan. Quantitative temporal reasoning. In Lecture 
Notes in Computer Science. Springer-Verlag, 1990. 

[ 161 A. N. Fredette and R. Cleaveland. RTSL: a language 
for real-time schedulability analysis. In IEEE Real- 
Time Systems Symposium, 1993. 

[17] R. Gerber and I. Lee. A proof system for communi- 
cating shared resources. In IEEE Real-Time Systems 
Symposium, 1990. 

[ 181 T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. 
Symbolic model checking for real-time systems. In 
Proceedings of the 7th Symp. on Logic in Computer 
Science, 1992. 

[19] J. P. Lehoczky, L. Sha, J. K. Strosnider, andH.Tokuda. 
Fixed priority scheduling theory for hard real-time 
systems. In Foundations of Real-Time Computing - 
Scheduling and Resource Management. Kluwer Aca- 
demic Publishers, 1991. 

[20] H. Lewis. A logic of concrete time intervals. In 
Proceedings of the 5th Symp. on Logic in Computer 
Science, pages 380-389,1990, 

[21] B. Lin and A. R. Newton. Efficient symbolic ma- 
nipulation of equvialence relations and classes. In 
Proceeding of the Int. Workshop on Formal Methods 
in VLSI Design, 199 1. 

[22] C. L. Liu and J. W. Layland. Scheduling algorithms 
for multiprogramming in a hard real-time environ- 
ment. Joumal of the ACM, 20( l),  1973. 

[23] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building 
a predictable avionics platform in Ada: a case study. 
In IEEE Real-Time Systems Symposium, 1991. 

8 (2) : 244-263,i 986. 

106 



[24] K. L. McMillan. Symbolic model checking - un ap- 
proach to the state explosion problem. PhD 1 hesis, 
SCS, Carnegie Mellon University, 1992. 

[25] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to 
timed graphs and hybrid systems. In Lecture Notes 
in Computer Science, Real-Time: Theory in Practice. 
Springer-Verlag, 1992. 

[26] L. Sha, M. H. Klein, and J. B. Goodenough. Rate 
monotonic analysis for real-time systems. In Foun- 
dations of Real-Time Computing -. Scheduling and 
Resource Managpment. Kluwer Academic Publish- 
ers. 1991. 

107 


