
Built-In Self-Test architectures

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

September 18, 2023



Introduction

Objectives:

▶ Configure a BIST architecture

Errors are defined with respect to a system’s service (its intended
functionality) [ALRH04]. The system’s service represents a
sequence of system’s external states and, in this context, an error
occurs when at least one of system’s external states deviates from
the intended, correct behavior [ALRH04].

A fault is the hypothesized cause of an error and, in this context,
fault tolerance offers means for attaining dependability and security
in computer systems by avoiding service failures in the presences of
faults [ALRH04].

© 2023 Opriţoiu Flavius. All Rights Reserved.



Error detection of combinational circuits

Error detection techniques identify the presence of an error and can
be classified into:

• concurrent, or

• preemptive

Concurrent error detection mechanisms function during system’s
normal operation while preemptive methods suspend the normal
operation and bring the system into a test mode [ALRH04].

Adding a concurrent test method to a design enhances it with
self-checking capabilities, in that the system is capable of verifying
its correct operation.

© 2023 Opriţoiu Flavius. All Rights Reserved.



Concurrent error detection

The concurrent error detection mechanisms include the following
methods:

• hardware duplication,

• code-based redundancy, and

• time-redundancy

Hardware duplication adds a copy to the module that needs
protection, whose outputs are compared. Difference between
outputs of the protected and the copy signal presence of errors.

Code redundancy verifies that the output of the protected module
preserve a so called invariant property. Example: For a unit
receiving 2 unsigned values that are multiples of 3 and calculates
the sum of the two, an invariant property (consider no overflow
occurs) is that the result needs to be a multiple of 3.

© 2023 Opriţoiu Flavius. All Rights Reserved.



Preemptive error detection

Preemptive error detection methods suspend the normal operation
of the system and brings it into a test mode [ALRH04]. Two
preemptive detection mechanisms, in used today, are:

• scan testing, and

• Built-In Self-Test (BIST)

Scan testing modify a sequential design by serially connecting
all/the majority of storage elements into dedicated scan channels,
which are nothing more than shift registers with external access.

BIST method, transforms a design into a self testable architecture,
capable of detecting the presence of errors in an autonomous
manner, making it suitable for safety-critical applications.

© 2023 Opriţoiu Flavius. All Rights Reserved.



BIST

BIST error detection method transforms a design into a self
testable architecture, capable of detecting the presence of errors in
an autonomous manner.

The typical BIST architecture is depicted bellow:

Circuit

under test
Outputs

M
U

X

Inputs

Test

control

unitTest

Pattern

Generator

Output Response

Analyzer
Error

The Test Pattern Generator (TPG) generates test vectors to be
delivered on Circuit Under Test (CUT)’s inputs. The Output
Response Analyzer (ORA) analyzes CUT’s results for detecting
errors. For a combinational CUT, for each test vector applied a
response vector is obtained at CUT’s output.
© 2023 Opriţoiu Flavius. All Rights Reserved.



TPG unit

The TPG unit can be implemented using:

• binary counters, and

• Linear Feedback Shift Registers (LFSRs)

Binary counters generate all input configurations for the CUT,
exhaustively.

LFSR represent typical mechanisms for generating test vectors in
BIST architectures. They are constructed as shift registers with a
feedback connection, operated by EXOR gates.

© 2023 Opriţoiu Flavius. All Rights Reserved.



LFSRs

The figure bellow describes a LFSR structure, on 4 ranks:

d q d q q qd d

set_b

clk
rst_b

q[0] q[1] q[2] q[3]

set_b set_b set_b

When initialized with a non-zero vector, a LFSR generates, at its
output, a pseudo-random, repeating sequence.

For the architecture above, the output sequence, composed of
4-bit vectors, repeats with a periodicity of 15 (all 4-bit vectors are
generated, excluding the all-zero configuration).

© 2023 Opriţoiu Flavius. All Rights Reserved.



LFSRs (contd.)
The 15 vectors sequence, generated at the output of the above
LFSR architecture is depicted bellow:

rst b clk q[3] q[2] q[1] q[0]

0 d 1 1 1 1

←−
−−

O
u
tp
u
t
se
q
u
en
ce

p
er
io
d
ic
it
y−
−−
→1 1 1 0 1

1 1 0 0 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 1 1
1 0 1 1 0
1 1 1 0 0
1 1 0 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 1 1
1 1 1 1 0
1 1 1 1 1
1 1 1 0 1

© 2023 Opriţoiu Flavius. All Rights Reserved.



ORA unit

ORA performs data compaction (with loss of information) by
processing all CUT’s responses while exercised with the test
vectors generated by the TPG. At the end of the compaction
process, ORA provides a signature. The signature is a reduced,
fixed-size vector, characterizing the entire set of results.

The signature for a CUT is associated to the TPG unit generating
CUT’s input vectors. The gold signature refers to the signature
obtained for the correct, fault-free, circuit. It is usually procured
through simulation.

The presence of errors in a CUT is detected by comparing the
obtained signature with the gold signature.

ORA components can be implemented using:

• counting techniques, and

• signature registers

© 2023 Opriţoiu Flavius. All Rights Reserved.



Counting techniques

Counting technique methods can count either the number of times
a logic value is generated on an output line, or the number of
transitions on the output line. For counting a specific logic value
(1 or 0) on an output line, binary counters can be used.

A transition counter is depicted bellow:

qd

rst_b

cntr
c_up q

clk
rst_b

data

rst_b

count

A counter unit is connected on each line of CUT’s output. In
consequence, a 4-bit output requires 4 counter instances. For an
output line, the final signature is represented by the content of the
counter after receiving all bits of that line.

© 2023 Opriţoiu Flavius. All Rights Reserved.



Signature registers

A Single Input Signature Register (SISR) is constructed around a
LFSR architecture, having one, additional, data line input. The
SISR constructed from the LFSR architecture previously presented
is depicted bellow:

d q EXOR d q q qd d

clk
rst_b

q[0] q[1] q[2] q[3]

EXOR

i

rst_b rst_b rst_b rst_b

The SISR needs to be initialized with the all-zero configuration.

A SISR unit is connected on each line of a CUT’s output and the
signature represents the content of the SISR after processing all
bits on that line.
© 2023 Opriţoiu Flavius. All Rights Reserved.



References

[ALRH04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. Dependable Secur. Comput., vol. 1,
no. 1, pp. 11–33, Jan. 2004.

© 2023 Opriţoiu Flavius. All Rights Reserved.


