Arrayed instantiation and generate constructs

Oprițoiu Flavius
flavius.opritoiu@cs.upt.ro

November 5, 2023

Introduction

Objectives:

- Build arrayed instances and configure generate blocks

For reading:
(C) "Advanced Module Instantiation", Laboratory notes [AMI**]

Arrayed instantiation shorthand to constructing multiple instances of the same module.

Generate blocks provide a more flexible approach to creating large numbers of instances with a more complex interconnection structure.

Arrayed instantiation

Shortcut to creating several instances of the same module, when all instances are connected to the same signals. Using arrayed instantiation for designs with more complex interconnections can become tedious.

The Verilog implementation bellow constructs a BCD8421 to E3 converter for k-digit numbers, using k instances of the 4 -bit adder, add4b.

```
1 module bcde3conv #(
2 parameter k = 4 // number of digits
3)(
4 input [4*k-1:0] bcd, //bcd input number
5 output [4*k-1:0] e3 //e3 output number
6 );
8 add4b cnv[k-1:0] (.x(bcd),.y(4'd3),.z(e3));
9 endmodule
```

The arrayed instantiation in line 8 builds k instances of $a d d 4 b$.
(c) 2023 Oprițoiu Flavius. All Rights Reserved.

Arrayed instantiation (contd.)

Arrayed instantiation format:

$$
\begin{aligned}
& \text { module-name instance_name [top-index:bottom-index] } \\
& \quad(. p(s), \ldots)
\end{aligned}
$$

If the width of the signal s equals the number of instances times the width of port p, then s will be partitioned equally into the number of bits of port p, each partition being assigned to one of the instances in the array. For the bcde3conv example, input bcd is partitioned into 4 bits, each group being assigned to one of the k instances (similarly for output e3).

If the width of the signal s equals the width of port p, then s is connected to all instances in the array. For bcde3conv, the value of 3 on 4 bits, to be added to each BCD8421 digit, has the same width as port y of the adder, thus it is connected as it is to all k instances.
(C) 2023 Oprițoiu Flavius. All Rights Reserved.

generate blocks

A more versatile mechanism for creating multiple instances of an object within a module. The following object types can be generated:

- one or several modules
- any number of initial/always blocks
- one or several continuous assignments
- any number of signal declarations

The generated instances are constructed programmatically inside a generate block, delimited by the generate and endgenerate keywords. The generate block makes use of the for loop for controlling the instances creation. The index control variable used by this loop is of genvar type, a special non-negative valued integer.

For finer control over the instantiation, the if ... else and case instructions can be used inside the generate block.
(c) 2023 Opriţoiu Flavius. All Rights Reserved.

generate blocks (contd.)

The for loop inside the generate block:

- uses a genvar variable as loop index
- has its content within a named begin ... end block The previous BCD8421 to E3 converter is re-written bellow:

```
module bcde3conv #(
    parameter k = 4
)(
    input [4*k-1:0] bcd,
    output [4*k-1:0] e3
);
    generate
        genvar i;
        for (i=0; i < k; i=i+1) begin: vect
            add4b uconv(
                .x(bcd[i*4+3:i*4]),.y(4'd3),.z(e3[i*4+3:i*4])
            );
            end
        endgenerate
    endmodule
    (c) 2023 Oprițoiu Flavius. All Rights Reserved.
```


generate blocks (contd.)

The named begin . . . end block starts in line 9, where begin is followed by a valid Verilog identifier (vect).

Inside the named block, a single instance is created in each iteration, denoted by a different Verilog identifier (uconv).

The port association makes use of loop index variable i for grouping together 4 consecutive bits from bcd input and 4 from e3 output. The consecutive bits are selected using the part-select expression $[i * 4+3: i * 4]$ applied to both ports.

The value of 3 , represented on 4 bits, is used for the second operand of the k instances of add $4 b$ module.

Solved problem

The input preprocessing unit of a cryptographic application
Exercise: Construct the datapath for the input preprocessing unit (IPU, or simply the unit) of a 256-bit Secure Hash Algorithm 2 (SHA-2) unit (see [FIPS15], section 5.1.1).

Solution: The unit receives the message at input, pads it and delivers it at the output. At the input the message is received in packets of 64 bits. At the output the padded message is delivered in blocks of 512-bits.

Message padding: Considering a message of ℓ bits (ℓ being a multiple of 64), padding appends, in order:

- one bit of 1
- k bits of 0 s, so that $\ell+1+k \equiv 448(\bmod 512)$
- the value of ℓ represented on 64 bits

Solved problem (contd.)

Preprocessing phase example

Consider the 8 -bit ASCII message "abcd0123" ($\ell=64$ bits) is sent to the unit. The message is appended one bit of 1 followed by $k=383$ bits of 0 , followed by the value 64 represented on 64 bits. The 512-bit block output of the unit is represented bellow (digits are in hexadecimal):

```
6162636430313233 80000\ldots..0000 0000\ldots..0000 0000...0000 0000\ldots0000 0000...0000 0000...0000 0000\ldots0040
```



```
the message packet
```

6 padding packets: one packet having the msb of 1 followed by 63 bits of 0 and 5 packets having 64 bits of 0
packet with ℓ

For the 72 ASCII characters message " Dear All, I am writing to give you an update on your submitted proposal.", the unit would outputs 2 512-bit blocks.
(C) 2023 Oprițoiu Flavius. All Rights Reserved.

Solved problem (contd.)

Datapath design for the unit

As long as the message is not completely received, in each clock cycle the unit obtains a new 64 -bit message packet; $\Rightarrow 8$ such packets form a 512-bit block. These 8 packets are stored in a register file, regfl, with 8 registers, 64-bits each.

Because the padded message's length is multiple of 512 and ℓ is multiple of $64: \Rightarrow$ the length of the padding data (the bit of $1, k$ bits of $0 \mathrm{~s}, \ell$ on 64 bits) is multiple of 64 bits. It follows that the padding data can be split in 64-bit packets and stored in the register file.

Solved problem (contd.)

Datapath design for the unit

For message "abcd0123", the splitting of the padding data into 64-bit packets is depicted bellow:

$\left.\begin{array}{cccccccc}\text { "abcd01234" } & \begin{array}{c}1 \text { followed } \\ \text { by } 630 \mathrm{~s}\end{array} & \begin{array}{c}64 \text { bits } \\ \text { of } 0 \mathrm{~s}\end{array} & \begin{array}{c}64 \text { bits } \\ \text { of } 0 \mathrm{~s}\end{array} & \begin{array}{c}64 \text { bits } \\ \text { of } 0 \mathrm{~s}\end{array} & 64 \text { bits } & 64 \text { bits } & \text { of } 0 \mathrm{~s}\end{array} \begin{array}{c}\text { of } 0 \mathrm{~s}\end{array}\right]$ sizse, ℓ

Thus, there are 4 types of packets operated by the unit's datapath:

1. message packet(s)
2. padding packet: containing a bit of 1 followed by 63 of 0 s
3. zero packet(s): containing 64 bits of $0 s$
4. message length packet: value of ℓ on 64 bits

The message's length, ℓ, is calculated inside the unit using a 64-bit register, incremented by 64 each time a new packet is stored in regfl.
(C) 2023 Oprițoiu Flavius. All Rights Reserved.

Solved problem (contd.)

Datapath design for the unit

Solved problem (contd.)

Datapath design for the unit

The datapath has the following inputs, as seen on the diagram from previous slide:

1. pkt: on which it receives message packets
2. st_pkt: activates storing of current packet
3. clr: clears the counter and the 64-bit register storing ℓ
4. pad_pkt: active if the current packet is a padding one
5. zero_pkt: active if the current packet is a zero packet
6. $m g / n_{-} p k t:$ active if the current packet is message's length, ℓ

The datapath has the following outputs:

1. idx: next available address in regfl; it also indicates how many packets were stored so far in the current block
2. blk: the output 512-bit block
(c) 2023 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)

The register file

The dec\#(3) is an instance of the dec module available parameterized with the value of 3 for the selection line's width.
(c) 2023 Oprițoiu Flavius. All Rights Reserved.

Solved problem (contd.)

The register file

The register file, regfl assembles 8 consecutive packets received on input d into a complete blocks. The next available address in the register file is provided by a 3-bit counter to input s and storage of the packets is activated by the we, enable input.

The register file's output, q, is constructed by concatenating the content of al internal registers, with the register at the address 0 providing the most significant bits and the register at address 7 providing the least significant bits of the output.

Solved problem (contd.)

The packet multiplexer

The packet "multiplexer", pktmux, provides the current packet to be stored in the register file. Because there are 4 types of packets (see slide 11), pktmux has 3, mutually-exclusive control inputs:

1. pad_pkt: pktmux delivers a padding packet at its output
2. zero_pkt: it delivers a zero packet
3. mg/n_pkt: it delivers the message length packet, provided by the 64-bit register to pktmux's input ms_len

If none of the 3 control lines are active, pktmux delivers message

References

[AMI**] Advanced Module Instantiation. [Online]. Available: http://www.eecs.umich.edu/courses/eecs470/OLD/w14/labs/ lab6_ex/AMI.pdf (Last accessed 17/04/2016).
[FIPS15] National Institute of Standards and Technology, "FIPS PUB 180-4: Secure Hash Standard," Gaithersburg, MD 20899-8900, USA, Tech. Rep., Aug. 2015. [Online]. Available: http://dx.doi.org/10.6028/NIST.FIPS.180-4 (Last accessed 06/04/2016).

