# Verilog modeling using the always and initial blocks 

Proposed problems

Oprițoiu Flavius<br>flavius.opritoiu@cs.upt.ro

September 18, 2023

## Problem 1

Design a Verilog module named msd, using always blocks, having one input $i$ on 5 bits and one output o on 4 bits. Output $o$ is the value of the most significant decimal digit in input i's unsigned number decimal representation. Example: $i=23 \rightarrow 0=2$; $i=9 \rightarrow o=9$.

Note: For implementing this problem download source file and, respectively, script file runmsditat, only modifying the Verilog source file.

## Problem 2

Construct a module named div3, having an input $i$, on 4 bits and an output $o$, on the minimum number of bits so that at the output to provide the quotient of dividing by 3 the unsigned number connected at the input $i$. Do not use the "/" Verilog division operator for this exercise and implement the module using an always block. Example: $i=10 \rightarrow o=3 ; i=2 \rightarrow o=0$.

Note: For implementing this problem download source file divive and, respectively, script file rundivz.ett, only modifying the Verilog source file.

## Problem 3

Construct a device for counting the number of bits of 1 for the unsigned number connected at the input $i$. The module, named cnt1s, has an input $i$, on 6 bits and an output $o$ on the minimum required number of bits. Build the module using always blocks.

Note: For implementing this problem download source file centls.v and, respectively, script file run_entistext, only modifying the Verilog source file.

## Problem 4

Design a device named seq3b having an input $i$ on 4 bits and an output $o$ on a single bit. The output is active if the binary number connected at the input contains a sequence of 3 or more consecutive bits with the same value. Example: $i=14 \rightarrow o=1$; $i=9 \rightarrow o=0$.

Note: For implementing this problem download source file and, respectively, script file runseasbbete, only modifying the Verilog source file.

## Problem 5

Construct a module named mul5bcd having a 4-bit input $i$ and two ouptuts $d$ and $u$, both on 4 bits. At input $i$ it receives a BCD digit (on 4 bits) and the module provides at the output the result of multiplying by 5 , in BCD, the input digit: the output $d$ represents the decimals' figure while the output $u$ represents the units' figure of the result. Example: $i=3(0011) \rightarrow d=1(0001), u=5(0101)$; $i=9 \rightarrow d=4(0100), u=5(0101)$.

Note: For implementation download source file mulsbed. and, respectively, script file Crummulsbedizt , only modifying the Verilog source file.

## Problem 6

Design module text2nibble, having input $i$ on 8 bits and outputo on 4 bits. Input $i$ receives one ASCII character. If the character is a decimal digit (' 0 ' to ' 9 '), provided at output the value of the digit, otherwise provide value 15.

| ASCII char | ASCII char value (radix 16) | Output o |
| :--- | :--- | :--- |
| '0' | $30(00110000)$ | 0 |
| '1' | $31(00110001)$ | 1 |
| '2' | 32 | 2 |
| '3' | 33 | 3 |
| $' 4 '$ | 34 | 4 |
| '5' | 35 | 5 |
| $' 6 '$ | 36 | 6 |
| $' 7 '$ | 37 | 7 |
| $' 8 '$ | 38 | 8 |
| $' 9 '$ | $39(00111001)$ | 9 |

(c) 2023 Oprițoiu Flavius. All Rights Reserved.

## Problem 6 (contd.)

Note: For implementation download source file textenibblev and, respectively, script file crun text2nibble ext, only modifying the Verilog source file.

## Problem 7

Build a register on 4 bits, named $r 4 b$. The register can perform a parallel load of the value on 4-bit input $d$ into its content and it can also right-shift its content by 1 position, in which case the value of the most significant bit is provided at the 1-bit input sh_in. The register has 2 synchronous command inputs: command line $/ d$ - which activates the parallel loading of $d$ and command line sh - which triggers the right-shift. The register has a 4-bit output $q$, representing its current content. For implementation modify the Verilog source file rabv.

Note: The synchronous sequential devices, like the register above, will have an implicit input for the clock signal, clk, and an implicit asynchronous, active low, reset line, $r s t \_b$, unless otherwise stated.

