Verilog modeling using the always and initial blocks Proposed problems

Oprițoiu Flavius flavius.opritoiu@cs.upt.ro

September 18, 2023

Design a Verilog module named *msd*, using always blocks, having one input *i* on 5 bits and one output *o* on 4 bits. Output *o* is the value of the most significant decimal digit in input *i*'s unsigned number decimal representation. Example: $i = 23 \rightarrow o = 2$; $i = 9 \rightarrow o = 9$.

Note: For implementing this problem download source file • msd.v and, respectively, script file • run_msd.txt, only modifying the Verilog source file.

Construct a module named *div3*, having an input *i*, on 4 bits and an output *o*, on the minimum number of bits so that at the output to provide the quotient of dividing by 3 the unsigned number connected at the input *i*. Do not use the "/" Verilog division operator for this exercise and implement the module using an always block. Example: $i = 10 \rightarrow o = 3$; $i = 2 \rightarrow o = 0$.

Note: For implementing this problem download source file • div3.v and, respectively, script file • run.div3.txt, only modifying the Verilog source file.

C 2023 Opriţoiu Flavius. All Rights Reserved.

Construct a device for counting the number of bits of 1 for the unsigned number connected at the input *i*. The module, named *cnt1s*, has an input *i*, on 6 bits and an output *o* on the minimum required number of bits. Build the module using always blocks.

Note: For implementing this problem download source file **•** *cnt1s***•** and, respectively, script file **•** *run_cnt1s.txt*, only modifying the Verilog source file.

Design a device named *seq3b* having an input *i* on 4 bits and an output *o* on a single bit. The output is active if the binary number connected at the input contains a sequence of 3 or more consecutive bits with the same value. Example: $i = 14 \rightarrow o = 1$; $i = 9 \rightarrow o = 0$.

Note: For implementing this problem download source file • seq3bv and, respectively, script file • run_seq3b.txt, only modifying the Verilog source file.

Construct a module named *mul5bcd* having a 4-bit input *i* and two ouptuts *d* and *u*, both on 4 bits. At input *i* it receives a BCD digit (on 4 bits) and the module provides at the output the result of multiplying by 5, in BCD, the input digit: the output *d* represents the decimals' figure while the output *u* represents the units' figure of the result. Example: $i = 3(0011) \rightarrow d = 1(0001), u = 5(0101);$ $i = 9 \rightarrow d = 4(0100), u = 5(0101).$

Note: For implementation download source file <u>mul5bcd.v</u> and, respectively, script file <u>run_mul5bcd.txt</u>, only modifying the Verilog source file.

Design module *text2nibble*, having input *i* on 8 bits and outputo on 4 bits. Input *i* receives one ASCII character. If the character is a decimal digit ('0' to '9'), provided at output the value of the digit, otherwise provide value 15.

ASCII char	ASCII char value (radix 16)	Output o
'0'	30 (00110000)	0
'1'	31 (00110001)	1
'2'	32	2
'3'	33	3
'4'	34	4
'5'	35	5
'6'	36	6
'7'	37	7
'8'	38	8
'9'	39 (00111001)	9

© 2023 Oprițoiu Flavius. All Rights Reserved.

Problem 6 (contd.)

Note: For implementation download source file • text2nibble.v and, respectively, script file • run_text2nibble.txt, only modifying the Verilog source file.

Build a register on 4 bits, named r4b. The register can perform a parallel load of the value on 4-bit input d into its content and it can also right-shift its content by 1 position, in which case the value of the most significant bit is provided at the 1-bit input sh_in . The register has 2 synchronous command inputs: command line ld – which activates the parallel loading of d and command line sh – which triggers the right-shift. The register has a 4-bit output q, representing its current content. For implementation modify the Verilog source file rabv.

Note: The synchronous sequential devices, like the register above, will have an implicit input for the clock signal, clk, and an implicit asynchronous, active low, reset line, rst_b , unless otherwise stated.

© 2023 Oprițoiu Flavius. All Rights Reserved.